软件开发语言模型(CodeBERT)

在这里插入图片描述

CodeBERT由微软和清华大学2020年共同开发,是一种预训练的语言模型,在大规模的代码数据上进行了预训练,能够理解和生成代码。它可以用于多种软件开发任务,如代码补全、代码生成、代码翻译、代码摘要等。通过对大量不同编程语言的代码进行学习,CodeBERT能够捕捉代码中的语义和结构信息,从而为开发人员提供更准确、更有用的代码建议和生成结果。

一、模型介绍

1.模型架构
CodeBERT的架构本质上是由多个自注意力“头”组成的Transformer编码器层堆栈。对于输入序列中的每个标记,每个头会计算键、值和查询向量,用于创建加权表示/嵌入,同一层中所有头的输出被组合并通过一个全连接层,每层都用跳过连接相连,然后进行层规范化.
2.预训练数据
CodeBERT使用了来自CodeSearchNet数据集的6种编程语言(Python、Java、JavaScript、PHP、Ruby、Go)的2.1M双峰数据(即自然语言与编程语言对,NLPL pairs)和6.4M单峰代码数据 ,这些数据均来源于GitHub中的开源仓库.
3.预训练任务
掩码语言建模(Masked Language Modeling,MLM): 选择自然语言和编程语言中的一组随机位置将其标记屏蔽掉,然后用特殊的[MASK]标记替换所选位置,模型的目标是预测被掩盖的原始标记.
替换标记检测(Replaced Token Detection,RTD):在原始自然语言序列和编程语言序列中,有少量的标记会被随机屏蔽掉,训练一个生成器模型来生成屏蔽词,然后训练一个鉴别器模型来确定一个词是否是原始词,以此完成二元分类任务.
4.下游任务
代码搜索:根据给定的自然语言查询,从大量代码中检索出与之语义最相关的代码片段。例如,开发人员输入“如何实现列表排序”,CodeBERT可以帮助找到相关的排序算法代码.
代码转换或翻译:将一种编程语言的代码转换为另一种编程语言的等效代码。比如将Python代码翻译为Java代码,帮助开发人员在不同语言之间进行代码迁

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值