表面缺陷检测方法库(awesome defect detection)

在这里插入图片描述

awesome defect detection汇集多种表面缺陷检测方法的仓库,它包括了学术论文、开源工具、算法汇总以及数据集等。
包含基于深度学习的语义分割、目标检测以及对抗性网络(GAN)等技术,还关注了 PCB 电路板、钢材、胶囊、电池、织物和水果蔬菜等特定行业的应用。
语义分割可像素级确定缺陷区域,目标检测能定位图像中异常部分,基于 GAN 的方法提升识别准确性,且提供的代码库可直接用于实际项目开发。
开源项目地址是:https://github.com/tomhardy3dvisionworkshop/awesomedefectdetection

一、技术原理

1.基于深度学习的语义分割
原理:语义分割是一种对图像中的每个像素进行分类的技术,以确定每个像素属于缺陷区域还是正常区域。在表面缺陷检测中,通过大量已标注的包含缺陷和正常表面的图像数据对神经网络进行训练,网络学习到不同类别像素的特征表示,从而能够在新的图像中准确地分割出缺陷区域。例如,在检测金属表面的裂纹时,网络经过训练后可以识别出图像中裂纹所在的像素,将其与正常金属表面的像素区分开来。
应用案例:在电子元件表面缺陷检测中,可精确地找出焊点的虚焊、短路等缺陷区域;在纺织品瑕疵检测中,能定位织物上的疵点、色差等问题。
2.基于深度学习的目标检测
原理:目标检测旨在从图像中定位和识别出特定的目标物体或区域,在表面缺陷检测中,将缺陷视为目标进行检测。常用的目标检测算法基于卷积神经网络(CNN),如Faster RCNN、SSD等,先通过卷积层提取图像特征,然后生成一系列的候选区域,再对这些候选区域进行分类和回归,确定缺陷的位置和类别。以检测汽车车身表面的凹陷为例,模型能够在图像中准确地框选出凹陷的位置,并判断其严重程度。
应用案例:可用于检测机械零件表面的磨损、孔洞等缺陷,以及食品包装上的印刷错误、变形等问题 。
3.基于对抗性网络(GAN)
原理:GAN由生成器和判别器组成,生成器试图生成与真实数据相似的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值