视频理解工具(VideoMAE)

在这里插入图片描述

随着人工智能的发展,预训练模型在各种数据模态上取得了显著成果,但视频基础模型的发展相对滞后。VideoMAE的出现旨在填补这一空白,为视频理解任务提供一种高效的数据驱动方法。
受到图像领域中掩码自编码方法的成功启发,VideoMAE将其扩展到视频领域,以学习更有效的视频表示,从而在视频下游任务中取得更好的性能。
VideoMAE基于掩码自动编码器(MAE)的自监督视频预训练方法,通过对视频进行随机掩码和重建,学习到视频的有效表示,可用于多种视频理解下游任务。
能够利用大规模的无监督视频数据进行预训练,提高模型的泛化能力和性能。预训练后的模型在动作识别、视频分类等任务上取得了显著的提升。
广泛应用于视频理解的各个领域,如视频检索、视频内容理解、动作分析等。
项目地址:https://github.com/mcgnju/videomae

一、技术原理

1.视频数据处理:首先,VideoMAE会将输入的视频分解成一系列的帧,并进一步将每一帧划分为不重叠的小块,如将每个大小为2×16×16的立方体视为一个token嵌入,这种联合时空立方体嵌入的方式降低了输入的时空维度,有助于缓解视频中的时空冗余。
2.Tube masking机制:为了避免视频帧之间时间相关性导致的信息泄漏问题,VideoMAE采用了temporal tube masking机制。即不同的帧共享相同的masking map,强制mask在整个时间轴上扩展,使得遮挡立方体的时间邻域总是被maskÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值