生成式物理引擎(Genesis)

在这里插入图片描述

Genesis是一款由腾讯研究院等机构推出的开源生成式物理引擎。该项目历经 24 个月的合作,由 20 多个研究实验室共同参与完成,展现了强大的学术和技术基础。
旨在提供一个通用的机器人和物理 AI 应用综合仿真平台,通过开源的方式,让更广泛的社区能够使用高性能工具,推动高级物理仿真的大众化,为各种模态自动生成数据。
项目地址:https://github.com/julienkay/com.doji.genesis

一、核心特点

1.超高速模拟:Genesis的模拟速度比现有的GPU加速机器人模拟器快10至80倍,例如在单个RTX 4090显卡上,其刚体动力学模拟每秒可产生数百万个模拟步骤,能比实时物理模拟快约430,000倍,大大缩短了开发周期。
2.广泛的材料支持:支持模拟人类和机器人日常生活中遇到的多种材料及其相互作用,包括刚体、铰接体、液体(牛顿流体、非牛顿流体、粘度、表面张力等)、气体现象(气流、热流等)、可变形物体(弹性、塑性、弹塑性)、薄壳物体(绳索、布料、纸张、卡片等)以及颗粒物体(沙子、豆子等)。
3.多种机器人支持:能够模拟各种各样的机器人,如机械臂、腿式机器人、灵巧手、移动机器人、无人机、软体机器人等,并且是首个全面支持软肌肉和软体机器人及其与刚体机器人相互作用的平台,还配备了类似URDF的软体机器人配置系统。
4.多物理后端求解器支持:内置了从底层构建的统一物理引擎,支持多种物理求解器,如物质点法(MPM)、有限元法(FEM)、基于位置的动力学(PBD)、光滑粒子流体动力学(SPH)、基于铰接体算法(ABA)的刚体动力学等,用户可根据具体需求轻松切换求解器。
5.精确的触觉传感器模拟:是首个集成基于物理的Gelsight型触觉传感器模拟的平台,在处理各种材料时,能够提供密集的基于状态和RGB的触觉反馈模拟。
6.超快光线追踪渲染器:提供了基于光栅化和光线追踪的渲染管道,其光线追踪器速度极快,能够以RL所需的分辨率提供实时逼真渲染,并且用户可以通过一行代码在不同渲染后端之间轻松切换。
7.大规模并行、GPU加速与可微性:支持在GPU上进行大规模并行化,并支持有效的梯度检查点,以实现可微模拟。它内部由Taichi驱动,但对用户屏蔽了与Taichi相关的潜在调试复杂性,同时实现了与PyTorch无缝集成的自定义张量系统,用户可以使用模拟输出计算自定义损失,并通过简单调用loss.backward()触发梯度流,从而实现基于梯度的策略优化和梯度加速的RL策略学习。
8.用户友好性:完全嵌入Python,提供了统一的接口,用户可以通过一行代码加载各种实体,如URDF、MJCF、各种形式的网格等,还可以轻松切换物理后端、渲染方式或定义加载对象的物理属性。
9.原生支持生成式模拟:将生成式AI与基于物理的模拟相结合,用户可以通过自然语言生成复杂的场景、角色动作等,为机器人等应用自动生成大量多样化的数据。

二、技术原理

1.统一物理引擎与多求解器集成
构建统一框架:Genesis的核心是一个从头开始构建的通用物理引擎,将多种物理求解器及其耦合集成到了统一的框架中,如物质点法(MPM)、有限元法(FEM)、基于位置的动力学(PBD)、光滑粒子流体动力学(SPH)、基于铰接体算法(ABA)的刚体动力学等。用户可根据具体的物理模拟需求,在这个统一框架内轻松切换不同的求解器,以实现对刚体、铰接体、织物、液体、烟雾、可变形体、薄壳材料、弹塑性体、机器人肌肉等多种类型物理现象的高精度模拟。
求解器的作用与优势:不同的求解器在处理不同类型的物理问题时具有各自的优势。例如,MPM适用于模拟具有大变形和破碎现象的物体,如流体、软组织等;FEM则在处理固体力学问题,如结构变形、应力分析等方面表现出色;PBD能够高效地处理布料、毛发等柔性物体的模拟;SPH在模拟流体流动、液体飞溅等效果时具有较高的逼真度;ABAbased刚体动力学则专注于刚体物体的运动和碰撞检测。通过集成多种求解器,Genesis能够综合利用它们的优势,为用户提供更全面、更准确的物理模拟结果。
2.GPU加速与性能优化
GPU加速的并行计算:借助GPU加速的并行计算技术,Genesis能够充分发挥GPU的强大计算能力,实现大规模的并行计算。在物理模拟过程中,许多计算任务,如粒子系统的更新、物体的碰撞检测、力的计算等,都可以并行地在GPU上进行处理,从而大大提高了模拟的速度。例如,在单个RTX 4090显卡上,Genesis的刚体动力学模拟每秒可产生数百万个模拟步骤,比现有的GPU加速机器人模拟器快10至80倍,甚至比实时物理模拟快约430,000倍,能够极大地缩短开发周期,加快机器人和AI研究的进度。
优化的碰撞检测与自动休眠机制:为了进一步提升性能,Genesis集成了优化的碰撞检测算法和自动休眠机制。在复杂的场景中,物体之间的碰撞检测是一项计算量较大的任务。Genesis采用了高效的碰撞检测算法,能够快速准确地检测到物体之间的碰撞,并及时做出响应。同时,对于那些处于收敛和静态状态的实体,自动休眠机制会暂停对它们的模拟计算,直到它们再次受到外部力的作用或与其他物体发生交互,从而避免了不必要的计算开销,提高了整体模拟效率。
3.可微模拟与与深度学习框架的集成
可微模拟能力:Genesis支持完全可微分的模拟,这是其与传统物理引擎的一个重要区别。通过实现可微模拟,Genesis能够与深度学习框架无缝集成,为基于梯度的优化算法提供支持。目前,其MPM求解器和工具求解器已经实现了可微分性,其他求解器的可微分功能也将陆续加入。在模拟过程中,用户可以使用模拟输出计算自定义损失,并通过简单调用loss.backward()触发梯度流,从而实现基于梯度的策略优化和梯度加速的RL策略学习,为机器人控制策略的自动生成和优化提供了有力的工具。
与PyTorch的集成:Genesis内部由Taichi驱动,但对用户屏蔽了与Taichi相关的潜在调试复杂性,并实现了与PyTorch无缝集成的自定义张量系统。用户可以像使用普通的PyTorch张量一样使用Genesis的张量进行计算和操作,同时还可以利用PyTorch丰富的深度学习工具和算法,如神经网络、优化器等,来构建和训练基于物理模拟的模型。这种紧密的集成使得开发者能够更加方便地将物理模拟与深度学习相结合,探索各种创新的应用场景,如机器人的自主学习、物理现象的预测和控制等。
4.生成式AI技术的融合
基于自然语言的场景生成:Genesis集成了基于大语言模型的生成代理,能够根据自然语言描述自动创建各种形式的数据和复杂的场景。例如,当用户输入“一个手持棍子的孙悟空小型角色在桌面上奔跑3秒,然后跳跃到空中”这样的自然语言描述时,Genesis能够自动生成符合物理规律且视觉连贯的动画序列,同时智能控制相机运动,确保最佳观察视角。这种基于自然语言的生成能力大大降低了场景创建的难度和工作量,为游戏开发、动画制作、虚拟现实等领域提供了更加便捷和高效的创作方式。
数据生成与增强:通过生成式AI技术,Genesis能够为机器人学习和训练自动生成大量多样化的数据,包括物理精确且空间一致的视频、相机运动和参数、人类和动物的角色运动、可部署到现实世界的机器人操作和运动策略、完全可交互的3D场景、开放世界可铰接物体的生成、语音音频、面部动画和表情等。这些生成的数据可以作为额外的训练数据,用于扩充现有的数据集,提高机器人在不同场景下的泛化能力和适应性,从而更好地应对复杂多变的现实世界任务。

三、发展方向

1.技术深化与优化
求解器的增强与扩展:不断完善和扩展其集成的多种物理求解器,如进一步优化刚体、MPM、SPH、FEM、PBD、稳定流体等求解器的性能,提高对更复杂物理现象和材料特性的模拟精度。同时,增加新的求解器或改进现有求解器的耦合方式,以更好地处理多物理场耦合问题,如热流固耦合等,使模拟结果更加贴近真实世界。
性能优化与加速:持续优化引擎的性能,利用更先进的GPU加速技术、并行计算算法和数据结构,进一步提高物理模拟的速度和效率。例如,通过改进碰撞检测算法、优化内存管理等方式,减少计算资源的消耗,使Genesis能够在更短的时间内完成大规模复杂场景的模拟。
可微分模拟的拓展:深化可微分模拟的功能,使其与更多的AI和机器学习框架兼容,支持更复杂的神经网络架构和训练算法。这将有助于开发更先进的机器人控制策略和物理模型学习方法,通过反向传播算法直接优化物理模拟中的参数,提高模型的准确性和适应性。
2.功能拓展与创新
多模态生成能力的提升:加强在语音、文本、图像、动画等多模态数据生成方面的能力,实现更加自然、流畅和逼真的多模态融合。例如,不仅能够生成与物理场景相匹配的视觉效果,还能生成更加准确、富有情感的语音和文本描述,以及与之对应的角色动画和表情,为虚拟人物、智能助手等应用提供更强大的支持。
复杂场景与任务的自动生成:进一步拓展其在复杂场景和任务自动生成方面的能力,能够根据更高级的语义理解和上下文信息,生成具有更丰富细节和逻辑关系的物理场景、机器人任务和交互情节。例如,生成包含多个角色和复杂环境的大型场景,以及涉及多步骤决策和协作的复杂机器人任务。
与其他技术的深度融合:加强与虚拟现实(VR)、增强现实(AR)、计算机视觉、自然语言处理等技术的深度融合。在VR和AR领域,提供更真实、更具交互性的物理体验,让用户能够在虚拟环境中与物理模拟对象进行自然的交互;在与计算机视觉的结合中,实现对真实世界物理现象的更准确感知和模拟,以及利用物理模拟来增强计算机视觉任务的性能;通过与自然语言处理技术的深度融合,进一步提升对自然语言描述的理解和生成能力,使物理引擎能够更智能地响应用户的输入和需求。

四、应用领域

1.机器人领域
机器人策略训练:通过快速模拟机器人在各种环境下的运动和操作,为机器人训练提供大量的数据,帮助机器人学习最优的运动策略和操作技巧,如机械臂的精准抓取、腿式机器人的行走与避障、无人机的编队飞行等。
机器人设计与优化:在机器人研发阶段,利用Genesis模拟不同结构和参数的机器人模型,评估其性能和可行性,从而优化机器人的设计,降低研发成本和时间。
人机交互研究:创建逼真的人机交互场景,模拟机器人与人类之间的物理接触和互动,研究人机协作的安全性、效率和舒适性,为开发更加智能、友好的人机交互系统提供支持。
2.游戏开发
场景创建与渲染:能够快速生成具有高度真实感的物理场景,包括地形、物体、流体等,为游戏世界提供丰富多样的环境。同时,其强大的渲染功能可以生成照片级真实感的图像和动画,提升游戏的视觉效果和沉浸感。
角色动画制作:根据自然语言描述或预设的动作脚本,生成角色的物理准确的动画,使角色的运动更加自然、流畅和逼真,丰富游戏中的角色行为和表现。
游戏物理效果增强:精确模拟游戏中的物理现象,如物体的碰撞、爆炸、流体流动等,增强游戏的物理真实感和趣味性,让玩家获得更加身临其境的游戏体验。
3.仿真教学
物理实验模拟:为物理教学提供一个直观、可视化的实验平台,教师和学生可以通过Genesis模拟各种物理实验,观察物理现象的发生和发展过程,更好地理解物理原理和规律。
工程教育:在机械工程、航空航天工程等专业的教学中,利用Genesis模拟工程系统的运行和性能,帮助学生掌握工程设计和分析的方法,提高学生的实践能力和创新思维。
安全教育培训:创建危险场景和事故模拟,如火灾、地震、交通事故等,用于安全教育和培训,让人们在虚拟环境中体验危险情况,学习应对方法和安全知识,提高安全意识和应急能力。
4.工业自动化
生产流程优化:模拟工业生产线上的物体传输、装配、加工等过程,分析生产流程中的瓶颈和问题,优化生产布局和工艺流程,提高生产效率和质量。
机器人自动化应用:评估机器人在工业生产中的适用性和性能,规划机器人的工作路径和任务分配,实现机器人的自动化操作和协同工作,提升工业自动化水平。
产品性能测试:对工业产品进行虚拟的物理性能测试,如强度、耐久性、可靠性等,提前发现产品设计中的缺陷和问题,减少实物测试的成本和时间。
5.虚拟现实与增强现实
虚拟环境构建:为虚拟现实和增强现实应用创建逼真的物理环境,使用户能够在虚拟世界中与物理对象进行自然的交互,增强虚拟体验的真实感和沉浸感。
交互设计与评估:模拟用户与虚拟环境中物体的交互过程,评估不同交互方式的可行性和效果,为交互设计提供依据,优化用户体验。
培训与教育应用:在职业培训、军事训练等领域,利用虚拟现实和增强现实技术结合Genesis的物理模拟,创建沉浸式的培训场景,让学员在虚拟环境中进行实践操作和训练,提高培训效果和安全性。
6.影视与动画制作
特效制作:生成各种复杂的物理特效,如自然灾害场景、物体破碎、流体效果等,为影视和动画作品增添视觉冲击力和真实感,提升作品的质量和观赏性。
角色与场景动画:快速生成角色的物理动画,如人物的运动、动物的行为等,以及大规模的场景动画,如城市的毁灭、战场的混乱等,提高动画制作的效率和质量。
虚拟拍摄:通过Genesis创建虚拟的拍摄场景和道具,实现虚拟拍摄和后期合成,降低拍摄成本和风险,同时提供更多的创作可能性。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值