Retentioneering专门为解析点击流、用户路径和事件日志设计,能够深入挖掘用户在系统中的行为轨迹和操作顺序,提供比传统漏斗分析更广泛和深入的洞察,帮助发现用户行为背后的潜在模式和问题。
提供了专门针对点击流数据的一系列处理方法,如事件分组、过滤、会话拆分等,同时具有交互式的图表和可视化功能,使复杂的用户旅程和数据结构变得清晰易懂,有助于快速理解和分析数据。
与 Python 生态系统的无缝集成:可以与 pandas、NetworkX、scikitlearn 等常用的 Python 库无缝集成,方便数据分析师和数据科学家在熟悉的环境中进行数据处理、分析和建模等工作,并且支持在 Jupyter 环境中进行交互式分析,提高了工作效率。
一、功能概述
1.点击流分析:Retentioneering专注于对用户在应用程序或网站上的点击行为进行分析。它可以记录用户点击的顺序、频率和时间间隔等信息,通过这些详细的点击流数据,描绘出用户在系统内的行为路径。例如,对于一个电商网站,它能够展示用户从进入首页到查看商品详情、加入购物车、结算等一系列操作的完整路径。
2.用户轨迹追踪:除了点击行为,还能跟踪用户在不同页面之间的跳转、停留时间等更广泛的用户轨迹。这有助于理解用户是如何与系统进行交互的,比如用户在某个页面停留时间过长可能表示对该页面内容感兴趣或者遇到了操作困难。
3.事件日志分析:能够处理和分析系统记录的各种事件日志,如用户登录、注册、提交表单等事件。通过对这些事件的顺序和关联分析,可以挖掘出用户行为模式背后的原因。
二、分析深度对比漏斗分析
1.漏斗分析局限性:传统的漏斗分析主要关注用户在一系列预定义步骤中的转化率,如电商购物流程中的各个环节(添加购物车 结算 支付成功)的转化率。它虽然能够提供关于用户在关键路径上的流失情况,但对于用户在漏斗之外的行为以及不同用户路径之间的复杂关系揭示不足。
2.Retentioneering的优势:
更广泛的行为理解:Retentioneering可以分析用户在整个系统中的各种行为,不限于预设的漏斗步骤。例如,它可以发现用户在浏览商品过程中,经常返回上一步重新查看某些商品细节,这是漏斗分析难以捕捉的行为细节。
深入挖掘行为原因:通过分析用户轨迹和点击流,不仅能够看到用户做了什么,还能推测为什么会这样做。比如,通过分析用户在某个功能页面的频繁操作和长时间停留,结合事件日志,可以推测用户可能对该功能存在困惑或者有特别的兴趣,从而为优化产品提供更有针对性的建议。
三、用户行为探索与细分
1.行为探索:
路径发现:可以发现用户在系统中采取的各种行为路径。例如,在一个在线教育平台上,发现一部分用户在观看课程视频后会立即参加课后测试,而另一部分用户则会先查看课程资料再进行测试,这些不同的行为路径为理解用户学习习惯提供了丰富的信息。
行为频率分析:分析用户各种行为的发生频率,如某个用户频繁使用搜索功能可能表示对平台内容查找有较高的需求,从而为优化搜索功能提供依据。
2.用户细分:
基于行为的细分:根据用户的行为模式将用户划分为不同的群体。例如,将频繁购买高价值商品的用户划分为高价值用户群体,将经常浏览但很少购买的用户划分为潜在客户群体。这种细分有助于针对不同用户群体制定个性化的营销策略或产品优化方案。
动态细分:随着用户行为的变化,动态地调整细分群体。比如,一个原本属于潜在客户群体的用户,在经过一段时间的频繁购买后,可以及时被划分到活跃客户群体中,以便提供更符合其当前行为特征的服务。
四、形成行为假设
1.驱动期望行为假设:通过对用户行为的分析,推测哪些因素可能会促使用户采取期望的行为,如购买产品、完成注册等。例如,发现用户在查看了详细的产品评价和使用案例后更有可能购买产品,就可以形成假设:提供丰富的用户评价和案例能够提高购买转化率。
2.远离产品行为假设:同样,也能分析哪些行为可能导致用户远离产品。比如,分析发现用户在遇到复杂的注册流程或者频繁弹出广告时,容易放弃使用产品,从而形成假设:简化注册流程和减少广告干扰可以降低用户流失率。这些假设可以为后续的产品优化和用户体验改进提供方向。
五、分析过程
- 数据准备
收集数据:首先确保你已经收集了足够的用户行为数据,包括点击流数据、用户轨迹数据和事件日志数据。这些数据可以来自网站分析工具(如Google Analytics)、应用程序内的埋点记录等。例如,在一个电商应用中,要收集用户的商品浏览记录、加入购物车操作、购买行为、搜索行为等相关数据。
数据格式调整:Retentioneering通常要求数据以特定的格式进行输入。可能需要将收集到的数据转换为数据框(DataFrame)的格式,例如在Python中可以使用Pandas库来处理数据格式。确保数据包含用户ID、事件时间戳、事件类型(如浏览页面、点击按钮等)等关键信息。 - 导入Retentioneering库并加载数据
安装和导入:在Python环境中,通过pip install retentioneering
命令安装Retentioneering库。在代码中使用import retentioneering
导入该库。
加载数据:使用Retentioneering提供的函数将准备好的数据加载进来。例如,data = retentioneering.DataProcessor.load_data(data_frame)
,其中data_frame
是包含用户行为数据的Pandas DataFrame。 - 定义用户细分标准
基于行为事件的细分:
根据用户的关键行为事件来划分用户群体。比如,在一个内容分享平台上,可以将“发布过内容的用户”和“仅浏览内容的用户”分为两个不同的群体。通过data.add_user_type('publisher', event_type='content_published')
来定义发布内容的用户群体,其中event_type
指定了划分的行为事件。
也可以基于多个行为事件的组合进行细分。例如,在一个在线游戏中,将“完成新手教程并且进行了至少一次内购的用户”划分为一个群体,可以通过设置多个条件来实现这种细分。
基于行为频率的细分:
考虑用户行为的发生频率。例如,在一个健身应用中,将“每周使用应用进行锻炼记录超过3次的用户”和“每月使用不到3次的用户”分为不同群体。可以使用Retentioneering的功能来统计用户行为的频率,然后根据频率阈值进行细分。
行为的时间间隔也是一个细分因素。比如,对于一个社交应用,将“每天都会登录的活跃用户”和“间隔几天才登录一次的用户”分开,可以通过分析用户登录事件的时间间隔来实现。
基于用户轨迹的细分:
分析用户在应用或网站中的行为轨迹。在一个旅游预订平台上,把“从搜索旅游目的地直接到预订酒店的用户”和“先浏览旅游攻略再预订酒店的用户”划分为不同群体。通过对用户行为路径的分析,识别出不同的典型路径,进而划分用户群体。 - 执行用户细分操作
应用细分标准:在定义好细分标准后,使用Retentioneering的细分功能来实际划分用户群体。例如,segmented_data = data.get_segments()
会根据之前定义的标准将用户数据划分为不同的群体。
查看细分结果:可以查看每个细分群体的基本信息,如群体规模、用户特征等。例如,通过segmented_data.segment_sizes
查看每个细分群体的大小,通过segmented_data.segment_user_ids
查看每个群体中的用户ID列表,从而了解细分后的用户分布情况。 - 分析和利用细分结果
行为差异分析:对不同细分群体的行为进行分析,找出他们在行为模式、偏好等方面的差异。例如,比较不同细分群体的转化率、停留时间、浏览内容深度等指标,以了解每个群体的特点。
个性化策略制定:根据细分结果制定个性化的营销策略、产品优化策略或用户体验提升策略。比如,对于高价值用户群体,可以提供专属的优惠和服务;对于活跃但未转化的潜在客户群体,可以设计有针对性的引导转化活动。
六、应用场景
1.用户体验优化
发现用户流失点:通过分析点击流和用户路径,能够精准地找出导致用户在网站或应用中流失的具体功能、页面或操作环节。例如,电商平台可以利用Retentioneering分析用户购物流程中的各个步骤,发现哪些页面的跳出率较高,进而对这些页面进行优化,如简化页面布局、优化加载速度、调整操作流程等,以提高用户的购物体验和转化率。
优化用户旅程:可以帮助企业了解用户从进入网站或应用到完成目标的整个过程,从而发现其中存在的问题和优化空间。例如,在线教育平台可以通过分析用户的学习路径,了解用户在不同课程模块之间的转换情况,根据分析结果优化课程推荐和导航,使用户能够更顺畅地完成学习任务,提升用户对平台的满意度和忠诚度。
2.营销策略制定
用户群体细分:基于用户的行为模式和路径,将用户细分成不同的群体,如高价值用户、潜在流失用户、新用户等。针对不同的用户群体,企业可以制定个性化的营销策略。例如,对于高价值用户,可以提供专属的优惠活动和优质的客户服务,以增强他们的忠诚度;对于潜在流失用户,可以及时推送个性化的挽留信息和激励措施,提高用户的留存率。
渠道效果评估:可以分析用户在不同营销渠道上的行为和转化情况,帮助企业评估各个营销渠道的效果。例如,企业可以通过Retentioneering对比分析用户在社交媒体、搜索引擎广告、电子邮件营销等不同渠道进入网站后的行为路径和转化率,从而确定哪些渠道带来的用户质量更高、转化率更好,为企业优化营销资源分配提供依据。
3.数据驱动的产品迭代
功能优化:依据用户对产品功能的使用频率、使用时长、操作路径等行为数据,了解用户对现有功能的满意度和需求,从而确定需要优化和改进的功能点。例如,视频播放应用可以通过分析用户的播放行为,发现用户经常跳过某些广告或者对特定的播放设置不满意,从而针对性地优化广告投放策略和播放功能,提升用户的使用体验。
新产品功能开发:通过对用户行为的深入分析,发现用户潜在的需求和未被满足的痛点,为新产品的功能开发提供依据。例如,社交媒体平台发现用户在分享照片和视频时,对隐私保护和编辑功能有较高的需求,于是在后续的产品迭代中增加了更强大的隐私设置和视频编辑功能,以吸引更多用户使用和提高用户的活跃度。
4.风险预警与控制
用户流失预警:通过对用户行为数据的实时监测和分析,建立用户流失预警模型。当用户的行为出现异常变化,如访问频率降低、停留时间缩短、关键操作减少等,及时发出预警信号,以便企业能够及时采取措施进行挽留。例如,在线游戏公司可以通过Retentioneering设置用户流失预警指标,当玩家的游戏时长和登录频率连续下降时,及时向玩家推送个性化的挽留活动和奖励,降低用户流失率。
欺诈行为检测:在金融、电商等领域,可以利用Retentioneering分析用户的交易行为和操作路径,发现异常的交易模式和行为序列,及时识别潜在的欺诈行为,保障企业和用户的利益安全。例如,银行可以通过分析用户的转账、取款等交易行为,发现异常的交易地点、时间和金额等,及时冻结账户并进行风险排查。