轻量级机器学习框架(TensorFlow Lite)

在这里插入图片描述

随着移动设备的普及和性能提升,以及边缘计算的兴起,在资源受限的设备上运行机器学习模型的需求日益增长。而 由Google开发的TensorFlow 原本是为桌面和服务器端设计,直接应用在移动平台或嵌入式端存在能耗高、延迟大、二进制发布版本过大等问题,为解决这些问题,TensorFlow Lite专为在移动设备、嵌入式设备和物联网设备等资源受限的环境中部署机器学习模型而设计。
它从一开始就注重模型的优化和转换,使得开发者能够将在服务器端训练好的 TensorFlow 模型转换为适合在移动端等资源受限环境中运行的.tflite 格式模型。最初的版本已经具备了基本的模型转换、推理执行等功能,支持常见的图像分类、物体检测等模型在移动设备上的部署和运行。

一、核心功能

1.模型转换:提供了专门的模型转换工具,如TensorFlow Lite Converter,能够将TensorFlow生成的训练模型方便地转换成TensorFlow Lite的.tflite格式模型,只需几行代码就能搞定,大大降低了在不同平台间部署模型的难度,使得从服务器端训练好的模型可以顺利迁移到移动端等设备上运行。
2.模型优化:运用量化技术、剪枝策略等多种优化手段,对模型进行压缩和优化。量化技术可将模型中的参数从高精度的数据类型转换为低精度的数据类型,如将浮点型数据量化为int8等类型,在减少数据存储量的同时加快模型的运算速度;剪枝策略则通过去除模型中一些不重要的连接或者神经元,让模型结构变得更加精简,降低模型复杂度,进而减少计算量,有效降低延迟。
3.推理执行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值