BERT(Bidirectional Encoder Representations from Transformers)算法即双向Transformer编码器表征,是一种用于自然语言处理(NLP)的预训练模型,由谷歌在2018年提出。
BERT算法为自然语言处理领域带来了重大突破,为各种NLP任务提供了强大的基础模型,后续许多NLP研究和应用都是在BERT的基础上进行改进和扩展的。
一、BERT算法常见变种及其对比
1.基础架构及训练策略对比
- RoBERTa:
- 训练数据与策略:使用了160GB数据,是BERT的10倍,采用动态掩码,在每个训练步骤中随机生成掩码,能更好地利用数据,提升模型对不同文本的理解能力。
- 训练任务:摒弃了Next Sentence Prediction(NSP)任务,通过实验证明该任务对模型性能提升帮助不大,甚至可能引入噪声。
- ALBERT:
- 参数优化:引入词向量因式分解方法,解耦词向量维度(e)与Transformer隐层维度(h),降低计算复杂度。同时采用Transformer跨层参数共享技术,减少了模型参数数量,缓解了过拟合问题,提高了训练效率。
- 训练任务:引入Sentence Order Prediction(SOP)任务代替NSP任务,SOP任