强化学习从人类反馈(Reinforcement Learning from Human Feedback,RLHF)是一种将人类反馈融入机器学习模型训练的技术。通过将人类的偏好、评价或直接指导等反馈作为奖励信号,训练奖励模型,再利用该奖励模型通过强化学习来优化智能体的策略,使智能体的行为与人类期望和偏好保持一致。
传统强化学习依赖预先定义的奖励函数来指导智能体行为优化,但对于许多实际问题,设计准确反映目标并激励正确行为的奖励函数很困难。尤其在涉及复杂人类价值或审美判断的任务中,人类直觉更有效,因此产生了RLHF方法。
一、基本流程
1.收集人类反馈:通常让人类对智能体的行为实例进行排序,也有研究探索使用数值反馈、自然语言反馈或直接对模型输出进行编辑等形式。比如在训练文本生成模型时,让人类对生成的文本进行打分或排序。
2.训练奖励模型:利用收集到的人类反馈数据,以监督学习的方式训练奖励模型,使其能预测给定提示下的响应是好(高奖励)还是坏(低奖励)。
3.策略优化:使用强化学习算法,如近端策略优化算法(PPO),结合奖励模型来优化智能体的策略,让智能体学习生成能获得高奖励的输出。
二、主要步骤
强化学习从人类反馈(RLHF)的具体工作流程一般包括收集人类反馈数据、训练奖励模型、基于奖励模型进行策略优化以及评估与迭代这几个主要步骤。
1.收集人类反馈数据
确