数据血缘(Data Lineage)

在这里插入图片描述

数据血缘在数据管理领域,它用于记录数据从产生、流转到最终使用的整个过程,展现数据的来源、数据之间的关联关系以及数据在不同处理阶段的变化情况,帮助数据管理人员理解数据的来龙去脉,确保数据的准确性、完整性和可追溯性。它描述了数据的来源、数据之间的关联关系以及数据在不同处理阶段的变化情况,如同家族族谱一样,记录着数据的 “前世今生”。

一、作用

1.数据溯源:当数据出现问题,如数据错误、数据不一致时,可以通过数据血缘追溯到数据的源头,快速定位问题产生的环节和原因,从而及时解决问题,确保数据的准确性和可靠性。
2.影响分析:在进行数据变更、系统升级或业务调整时,利用数据血缘可以清晰地了解到该操作对其他相关数据和业务流程的影响范围,提前做好应对措施,降低风险。
3.数据质量管理:帮助数据管理者全面掌握数据的流转过程,发现数据质量问题的高发环节,有针对性地制定数据质量提升策略,提高整体数据质量。

二、管理方法

  1. 数据血缘的梳理与规划
    业务流程梳理:与业务部门紧密合作,深入了解业务流程和数据流向。绘制详细的业务流程图,明确数据在各个业务环节的输入、输出以及处理过程。例如,在电商订单处理流程中,从用户下单、支付确认、库存扣减到物流配送,每个环节涉及的数据都需清晰界定。
    确定关键数据节点:在业务流程中,找出对数据质量和业务决策影响较大的关键数据节点。这些节点通常是数据的源头、重要的加工点或数据的最终使用点。比如在财务报表生成过程中,原始财务数据的录入点以及报表汇总计算的节点就是关键数据节点。
    制定数据血缘规划:根据业务流程梳理和关键数据节点确定的结果,制定数据血缘管理的整体规划。明确数据血缘的采集范围、采集频率、存储方式以及展示形式等。例如,对于实时性要求较高的交易数据,确定每小时采集一次数据血缘信息;对于历史数据,按照一定的时间周期进行回溯采集。
  2. 数据血缘的采集与记录
    基于元数据采集:利用元数据管理工具,自动采集数据源、数据结构、数据处理规则等元数据信息。这些元数据是构建数据血缘的基础,通过分析元数据之间的关系,可以推断出数据的血缘关系。例如,数据库管理系统中的表结构、字段定义以及表之间的关联关系等元数据,能够帮助确定数据在数据库层面的流转路径。
    日志采集与分析:在数据处理系统中,开启详细的日志记录功能,记录数据的读取、写入、转换等操作。通过对日志的分析,可以获取数据在处理过程中的详细血缘信息。比如在 ETL(Extract,Transform,Load)作业中,日志会记录数据从源系统抽取、经过各种转换操作后加载到目标系统的全过程。
    手动记录补充:对于一些无法通过自动化方式采集到的数据血缘信息,如业务人员口头约定的数据处理规则、临时的数据调整操作等,需要建立手动记录机制。由相关责任人及时记录这些信息,确保数据血缘的完整性。
  3. 数据血缘的存储与管理
    建立数据血缘仓库:专门构建用于存储数据血缘信息的数据仓库。该仓库可以采用关系型数据库、图数据库等存储方式,根据数据血缘的复杂关系和查询需求选择合适的存储结构。例如,图数据库能够很好地表示数据之间的复杂关联关系,适合存储和查询数据血缘信息。
    数据血缘信息更新:随着业务的发展和数据的变化,数据血缘信息也需要不断更新。建立数据血缘信息的更新机制,确保及时反映数据的最新流转情况。例如,当数据处理流程发生变更时,及时更新数据血缘仓库中的相关信息,保证数据血缘的时效性。
    数据血缘的版本管理:对于重要的数据血缘关系,引入版本管理机制。记录数据血缘在不同时间点的状态,以便在需要时进行回溯和对比分析。比如在数据模型升级或业务流程调整时,能够查看历史版本的数据血缘,了解数据关系的演变过程。
  4. 数据血缘的展示与应用
    可视化展示:通过数据血缘可视化工具,将复杂的数据血缘关系以直观的图形化方式展示出来。用户可以通过图形界面清晰地看到数据的来源、流向以及各个数据节点之间的关系。例如,使用节点和连线的方式表示数据的流转路径,不同颜色的节点表示不同的数据类型或处理环节。
    数据查询与分析:提供便捷的数据血缘查询功能,允许用户根据数据名称、业务流程、时间范围等条件查询相关的数据血缘信息。支持对查询结果进行深入分析,如统计数据在各个环节的处理时间、分析数据质量问题的传播路径等。
    融入业务流程:将数据血缘管理融入到日常的业务流程和数据管理流程中。例如,在数据质量评估过程中,利用数据血缘信息快速定位问题数据的来源和影响范围;在新业务上线时,参考数据血缘信息评估对现有数据的影响,制定相应的数据迁移和整合策略。

三、开源工具

  1. Apache Atlas
    简介:Apache Atlas 是一个开源的数据治理平台,专注于元数据管理和数据血缘追踪,在 Hadoop 生态系统中广泛应用。
    特点:能与 Hive、HBase、Storm 等众多 Hadoop 组件无缝集成,自动采集这些组件的数据血缘信息;支持丰富的数据模型,可灵活定义和管理不同类型的数据;提供直观的 Web 界面,方便用户进行数据血缘的可视化展示、查询和分析。
    应用场景:适用于以 Hadoop 为核心的数据处理架构,帮助企业梳理大数据环境下复杂的数据关系,进行数据质量管理和合规性审计。
  2. Amundsen
    简介:由 Lyft 开源的数据发现和元数据管理平台,数据血缘是其重要功能之一。
    特点:拥有简洁易用的用户界面,降低了用户理解和使用数据血缘的门槛;支持多种数据源,包括关系型数据库、数据仓库、大数据平台等;具备强大的数据搜索功能,可通过数据血缘快速定位相关数据。
    应用场景:适合各类数据驱动型企业,帮助数据分析师、数据科学家等快速发现和理解数据,加速数据探索和业务分析过程。
  3. DataHub
    简介:由 LinkedIn 开源的数据目录和元数据管理工具,提供全面的数据血缘功能。
    特点:基于开源的元数据框架,可扩展性强,能适应不同规模和复杂程度的数据环境;支持实时数据血缘采集,及时反映数据的变化;通过 GraphQL API,方便与其他系统进行集成和定制开发。
    应用场景:适用于大型企业的数据治理项目,满足企业对海量数据的血缘管理和共享需求,促进数据资产的流通和利用。
  4. OpenLineage
    简介:专注于数据血缘标准化的开源项目,旨在提供通用的数据血缘模型和接口。
    特点:定义了统一的数据血缘规范,便于不同工具和系统之间的数据血缘信息交换和共享;支持多种数据处理框架,如 Spark、Flink 等;强调数据血缘的互操作性,可与其他数据治理工具协同工作。
    应用场景:对于希望在不同数据处理环境中实现数据血缘统一管理的企业,OpenLineage 提供了良好的解决方案,有助于打破数据孤岛,实现数据的全生命周期管理。

四、应用案例

1.银行应用
XX银行在数据资产管理中面临诸多挑战,如缺乏高效的数据资产梳理手段,跨平台血缘缺失制约数据价值评估与风险防控,数据治理成果依赖专家经验,全链路数据质量风险难识别等。为解决这些问题,SS银行与 aloudata 大应科技合作,借助 aloudatabig 主动元数据平台和列算子血缘解析能力,对数据资产管理平台进行升级。
通过配置化采集企业多类型数据库元数据及相关数据资产脚本,实现全域元数据资产采集和主动保鲜,元数据变更能自动感知并更新到资产看板和血缘结果中。数据资产管理平台支持跨平台血缘连通,配合智能裁剪血缘分析能力,实现精准的溯源和影响面分析,处理复杂 sql 脚本血缘解析时,血缘准确率达 99% 。在列算子血缘图谱基础上,支持灵活可扩展的数据标准和安全标签打标扩散能力,实现业务数据知识的沉淀和元数据语义知识补充。基于链路精准打标扩散能力形成重点场景基线,对基线上的资产变更主动保鲜,数据质量风险自动通知预警。升级后,日均访问量近 5000 次,资产详情页包含血缘模块,每日约一半用户会打开血缘页面,已纳管数十万个元数据实体,端到端连通从业务源端数据库到应用端报表的列算子血缘图谱,提升了数据管理和协作效率。
2.医疗集团:智慧医院数据大脑建设
XX医疗集团基于医院管理、发展以及学科建设需求,打造智慧医院数据大脑。在项目一期的运营数据中心建设中,使用 sql 数据精准解析技术让数据血缘清晰,形成数据网络。通过对医疗活动数据的时间序列记录,同步追踪资源消耗成本和收费服务数据,实现业务的数据化和业务流程的标准化,促进业务流、数据流和价值流的一体化。
借助数据血缘,实现了数据指标口径一致,通过数据和指标之间的血缘关系可视化,可一键从指标穿透到数据底层字段,实现指标展示到系统数据可视化追溯,指标和数据管理、使用、责任主体也实现可视化、可追溯性。这一数据资产管理框架确保了数据的透明度、一致性和可控性,助力医院管理者通过对患者安全相关的质量指标进行监控,精准定位问题,提高工作效率和医疗安全质量,推动医疗领域的数字经济发展 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值