基于纯视觉的 GUI 代理的屏幕解析工具(OmniParser)

在这里插入图片描述

OmniParser是一款开源工具,可通过解析用户界面截图生成结构化数据,助力打造视觉驱动的 GUI 自动化代理,赋能跨平台交互。

一、技术原理

1.数据集构建:从流行网页和应用中提取数据,构建可交互图标检测数据集和图标描述数据集,为模型训练提供基础。
2.检测模型:使用YOLOv8模型在可交互图标检测数据集上进行微调,能够识别和定位用户界面中的可交互区域,如按钮、图标等。
3.描述模型:利用BLIP - v2模型在图标描述数据集上进行微调,生成图标的功能描述,让AI明白图标的功能。
4.OCR模块:集成光学字符识别模块来提取屏幕上的文本,并与图标检测结果合并,去除高重叠的边界框,实现对屏幕文本的准确读取。
5.结构化表示:将检测到的元素和生成的描述整合,形成结构化的文档对象模型表示,并在潜在可交互元素上叠加边界框的截图,为大型语言模型提供清晰的视觉提示,减轻其行动预测负担,使其更准确地将预测行动转换为屏幕上的实际行动。

二、主要功能

1.内容识别与结构化:围绕每个元素绘制形状,读取多边形内的内容,创建详细的、结构化的屏幕表示,为AI进一步分析和交互提供基础。

  • 精准元素识别:OmniParser基于先进的深度学习模型,如YOLOv8和BLIP - v2等,能够高精度地识别和定位GUI中的各种元素,包括按钮、图标、文本框等。与一些传统的基于规则或模板匹配的GUI自动化工具相比,它对复杂界面和不规则元素的识别能力更强,能够适应不同的界面设计和风格。
    语义理解丰富:不仅能识别元素的位置和类型,还能通过预训练的语言模型生成图标的功能描述,理解屏幕上文本的语义信息,从而更全面地理解GUI的内容和功能。这使得它在处理需要深入理解界面语义的任务时,如自动化流程设计、智能辅助操作等,表现更为出色,而其他一些工具可能仅停留在元素的表面识别,缺乏对语义的深入理解。
    2.精准的文本识别:不仅能识别屏幕上的普通文本,对于嵌入在图像或图标中的文本也能准确读取,在解读图标标签或指令时非常实用。另外,还可以从不同字段中提取重要数据,如日期、姓名、总数等,在处理包含大量信息的文档时优势明显。
    文本提取准确:OmniParser集成的OCR模块经过优化,能够准确提取屏幕上的文本,包括各种字体、大小和颜色的文本,甚至对于倾斜、扭曲或带有背景干扰的文本也有较好的识别效果。相比之下,一些其他GUI自动化代理工具的OCR功能可能不够强大,在复杂场景下容易出现识别错误或遗漏。
    与元素识别融合:OCR结果能与图标检测等其他元素识别结果深度融合,去除高重叠的边界框,形成统一的结构化表示。这种紧密的融合方式使得文本信息与其他界面元素的关联更加清晰,便于后续的综合分析和处理,而其他工具可能需要用户额外进行文本与元素的匹配和关联操作,增加了使用的复杂性。
    3.智能表格识别:OmniParser V2能够认出更小的按钮和图标,不放过任何细节,在准确性上有了质的飞跃。

三、不足之处

1.存在敏感属性推断风险:对于OmniParser - BLIP2,可能会错误地推断图标图像中个人的性别或其他敏感属性,如种族、宗教等。这种错误推断可能会对边缘化人群造成伤害,因此不建议在类似工作场所的用例场景中使用。
2.无法检测输入中的有害内容:OmniParser旨在将屏幕截图忠实地转换为可交互区域的结构化元素和屏幕语义,不会检测其输入中的有害内容,需要用户自行确保提供给它的是无害输入。

四、应用场景

由于其强大的视觉解析和语义理解能力,OmniParser适用于多种领域和应用场景,如虚拟助手、软件测试、无障碍服务、数据提取等。无论是处理复杂的企业级应用界面,还是各种移动应用的GUI,都能发挥良好的作用。相比之下,一些其他工具可能在特定领域或特定类型的界面上表现较好,但通用性较差。
1.虚拟助手:通过将视觉界面解析任务交给OmniParser,虚拟助手能够更快速地理解和响应用户需求。例如,在操作系统或软件应用中,它能准确识别各功能选项,让自动化操作更加高效。
2.软件测试:在软件开发生命周期中,OmniParser可以帮助测试人员精准捕捉UI变化,快速反馈改进意见,使开发和修复问题的过程更为高效。开发者还可以用它自动检查界面问题,帮助QA团队跨不同平台自动化测试按钮、字段和流程,加快测试进程,确保用户体验的一致性。
3.无障碍服务:通过解析后的界面数据,OmniParser可以为视障用户提供更友好的导航体验,助力打造更加无障碍的互联网环境。
4.数据提取:在金融、医疗等行业,能够自动化提取数据,无论是银行对账单还是发票处理,都能准确识别字段并提取相关信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值