检索增强生成(Retrieval Augmented Generation,RAG)是一项前沿技术,它融合了基于检索的人工智能模型与生成式人工智能模型的优势,能够给出更准确、相关且更具人类语言特征的回复。通过整合这两种方法,RAG 使大型语言模型(LLM)能够访问并利用外部知识库中的最新信息,减少“幻觉”现象或不准确回复的出现。
RAG 的核心思想是用有针对性的领域特定信息,来补充大型语言模型中已有的海量知识。这使得模型生成的回复不仅连贯自然,而且以真实、及时的数据为依据。RAG 通过引入信息检索组件实现这一点,该组件根据用户输入从指定数据源获取相关信息。然后,检索到的数据会与用户查询一同提供给大型语言模型,使模型在生成回复时,既能结合其已有的知识,又能利用新获取的信息。
RAG 的主要优势之一在于,它能够在无需进行昂贵且耗时的模型重新训练的情况下,提高基于大型语言模型的应用程序的准确性和可靠性。通过让开发人员能够控制和更新大型语言模型使用的信息源,RAG 使企业能够快速适应不断变化的需求,并确保模型在广泛的场景中都能生成合适的回复。这种灵活性使得 RAG 成为一种经济高效的解决方案,可用于提升生成式人工智能技术在客户支持聊天机器人、问答系统和内容生成工具等各个领域的性能。
一、理解向量检索增强生成(Vector RAG)
向量检索增强生成(Vector RAG)是检索增强生成(RAG)架构的一种具体实现方式,它利用向量数据库实现高效的信息检索。在这种方法中,外部知识库被转换为高维向量空间,每条信息都被表示为一个稠密向量。这个过程被称为向量化或嵌入,它使 Vector RAG 系统能够根据用户查询与存储向量之间的相似度,快速识别并检索出最相关的信息。
Vector RAG 的工作流程通常包括以下步骤:
- 索引构建:外部知识库可能包含结构化、半结构化或非结构化数据,需要对其进行处理并转换为向量格式。这通过使用嵌入模型(如 BERT 或 RoBERTa)来完成,该模型将文本数据映射到高维向量空间。生成的向量随后存储在向量数据库(如 Pinecone、Weaviate 或 Milvus)中。
- 查询嵌入:当用户提交查询时,使用与索引构建阶段相同的嵌入模型,将查询转换为稠密向量表示。这确保查询和存储的信息处于同一向量空间,从而实现准确的相似度比较。
- 相似度搜索:向量数据库执行相似度搜索,查找与查询向量最相似的存储向量。这通常使用余弦相似度或欧几里得距离度量来完成。系统会检索排名前 k 的最相似向量,其中 k 是预先定义的返回结果数量。
- 上下文融合:检索到的向量随后转换回原始文本格式,并与用户查询相结合,作为大型语言模型的输入。这一步骤使大型语言模型能够访问外部知识库中的相关信息,并利用这些信息生成更准确、更有价值的回复。
- 回复生成:大型语言模型处理融合后的上下文,并生成结合其已有知识和检索信息的回复,然后将生成的回复返回给用户。
与传统的基于检索的系统相比,Vector RAG 具有多项优势。通过将信息表示为稠密向量,即使对于大规模知识库,它也能实现更快、更高效的相似度搜索。此外,嵌入模型的使用使 Vector RAG 能够捕捉查询与存储信息之间的语义相似性,从而实现更准确、更相关的检索。
然而,Vector RAG 也存在一些局限性。生成回复的质量在很大程度上取决于索引信息的质量和相关性。如果外部知识库过时、不完整或包含无关数据,大型语言模型可能会生成不理想的回复。此外,嵌入模型和向量数据库的选择会显著影响系统的性能和可扩展性。
尽管存在这些挑战,Vector RAG 已被证明是一种强大的技术,可用于增强生成式人工智能模型的能力。通过结合基于检索和生成方法的优势,Vector RAG 使企业能够在广泛的领域中构建更准确、可靠和适应性强的人工智能应用程序。
二、使用 Python 实现向量检索增强生成(Vector RAG)
要使用 Python 实现 Vector RAG,需遵循以下步骤:
- 选择嵌入模型:选择一个预训练的嵌入模型,如 BERT、RoBERTa 或 sentence-transformers,将文本数据转换为稠密向量表示。这些模型可通过 Hugging Face 的 Transformers 库或 sentence-transformers 包获取。
- 向量化知识库:使用选定的嵌入模型处理外部知识库,将每条信息转换为稠密向量。此过程可通过模型的分词器和编码器完成,它们将文本输入转换为相应的向量表示。
- 设置向量数据库:选择一个向量数据库,如 Pinecone、Weaviate 或 Milvus,用于存储和索引向量化后的知识库。这些数据库针对高效的相似度搜索进行了优化,能够处理大规模数据集。按照数据库文档建立连接,并为向量创建索引。
- 索引向量化数据:将向量化后的知识库插入向量数据库索引。这通常涉及建立与数据库的连接、初始化索引,并使用数据库 API 将向量添加到索引中。确保包含与每个向量相关的任何元数据或附加信息,这对后续检索和处理很有帮助。
- 实现查询嵌入:当用户提交查询时,使用相同的嵌入模型将查询转换为稠密向量表示,以确保查询和存储的向量处于同一向量空间,实现准确的相似度比较。
- 执行相似度搜索:利用向量数据库的相似度搜索功能,查找与查询向量最相似的存储向量。这通常需要调用数据库的搜索 API,传入查询向量,并指定返回结果的数量(前 k 个)。数据库将根据选定的相似度度量(如余弦相似度或欧几里得距离)返回最相似的向量。
- 检索并处理结果:检索到最相似的向量后,使用嵌入模型的解码器将它们转换回原始文本格式。将检索到的信息与用户查询相结合,作为大型语言模型的输入,使大型语言模型能够访问外部知识库中的相关信息并生成更准确、更有价值的回复。
- 生成回复:将融合后的上下文(用户查询 + 检索到的信息)传递给大型语言模型进行处理。大型语言模型将生成结合其已有知识和检索信息的回复。可使用 OpenAI 的 GPT-3 或 Hugging Face 的 Transformers 等库来访问和利用大型语言模型生成回复。
- 返回回复:最后,将生成的回复返回给用户。
以下是一个使用 Python、sentence-transformers 库进行嵌入以及 Pinecone 向量数据库的简化 Vector RAG 实现代码片段:
from sentence_transformers import SentenceTransformer
import pinecone
# 初始化嵌入模型
model = SentenceTransformer('all-MiniLM-L6-v2')
# 连接到Pinecone向量数据库
pinecone.init(api_key="your_api_key", environment="your_environment")
index_name = "your_index_name"
# 向量化并索引知识库
knowledge_base = [
"Python是一种高级解释型编程语言。",
"它强调代码的可读性和简洁性。",
"Python支持多种编程范式,包括面向对象和函数式编程。",
]
vectors = model.encode(knowledge_base)
pinecone.Index(index_name).upsert(vectors=zip(["doc_" + str(i) for i in range(len(vectors))], vectors))
# 查询嵌入和相似度搜索
query = "什么是Python?"
query_vector = model.encode([query])[0]
results = pinecone.Index(index_name).query(query_vector, top_k=2, include_metadata=True)
# 检索并处理结果
retrieved_info = [knowledge_base[int(result['id'].split("_")[1])] for result in results['matches']]
context = " ".join(retrieved_info)
# 生成并返回回复
response = generate_response(query, context)
print(response)
在这个示例中,sentence-transformers 库用于初始化嵌入模型并对知识库进行编码。
三、探索图检索增强生成(Graph RAG)
图检索增强生成(Graph RAG)是一种创新方法,它将检索增强生成(RAG)的概念进一步拓展,把知识图谱作为外部信息源。与依赖文本数据向量化表示的 Vector RAG 不同,Graph RAG 利用知识图谱的结构化特性,为大型语言模型提供丰富的上下文信息。
知识图谱是一种强大的表示和存储实体间复杂关系的方式,它不仅捕获实体本身,还记录定义实体的连接和属性。通过以图结构组织信息,知识图谱能够让人更深入地理解数据中的关系和层次结构,从而实现更复杂的推理和推断。
在 Graph RAG 架构中,外部知识库被表示为一个知识图谱,其中节点代表实体,边代表实体之间的关系。这种结构化表示使 RAG 系统能够遍历图谱,并根据用户查询检索相关子图。检索到的子图为大型语言模型提供知识图谱中聚焦且富含上下文的子集,使其能够生成更准确、更有价值的回复。
Graph RAG 的主要优势之一在于,它能够捕获和利用知识图谱的内在结构和语义。通过利用图谱的连接性和关系信息,Graph RAG 可以让大型语言模型更全面地理解领域知识,使其生成的回复不仅事实准确,而且与上下文相关。
此外,Graph RAG 支持无缝集成特定领域的知识图谱,使大型语言模型能够利用各个领域的专业知识。这种灵活性使其成为在医疗、金融和科学研究等领域构建智能应用的强大工具,在这些领域中,对复杂结构化数据进行推理的能力至关重要。
实现 Graph RAG 涉及多个步骤,包括构建知识图谱、索引图谱数据、根据用户输入查询图谱,以及将检索到的子图与大型语言模型集成。Neo4j、Amazon Neptune 和 JanusGraph 等流行的图数据库可用于存储和查询知识图谱,而 py2neo、Gremlin 和 SPARQL 等库则有助于 RAG 系统与图数据库之间的交互。
以下是一个使用 Python 和 py2neo 库与 Neo4j 图数据库交互的简化 Graph RAG 实现代码片段:
from py2neo import Graph
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# 连接到Neo4j图数据库
graph = Graph("bolt://localhost:7687", auth=("username", "password"))
# 初始化大型语言模型和分词器
model_name = "t5-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# 根据用户输入查询图谱
query = "法国的首都是什么?"
cypher_query = f"""
MATCH (c:Country {{name: 'France'}})-[:HAS_CAPITAL]->(city:City)
RETURN city.name AS capital
"""
result = graph.run(cypher_query).data()
# 检索相关子图
capital = result[0]['capital']
context = f"法国的首都是{capital}。"
# 使用大型语言模型生成回复
input_ids = tokenizer.encode(query + " " + context, return_tensors="pt")
output = model.generate(input_ids)
response = tokenizer.decode(output[0], skip_special_tokens=True)
print(response)
在这个示例中,Neo4j 图数据库用于存储知识图谱,py2neo 库用于连接数据库并执行 Cypher 查询。用户的查询用于构建 Cypher 查询,以检索相关子图(在本例中是法国的首都)。检索到的信息随后与用户查询相结合,作为大型语言模型的输入,生成最终回复。
Graph RAG 提供了一种强大而灵活的方法,通过利用知识图谱中存储的丰富结构化信息来增强生成式人工智能模型的能力。通过结合图数据库、知识表示和大型语言模型的优势,Graph RAG 能够开发出智能应用程序,这些应用程序可以对复杂的特定领域数据进行推理,并生成准确、与上下文相关的回复。
四、使用 Python 构建图检索增强生成(Graph RAG)系统
要使用 Python 构建 Graph RAG 系统,需要遵循以下关键步骤:
- 设置图数据库:选择一个图数据库,如 Neo4j、Amazon Neptune 或 JanusGraph,用于存储和管理知识图谱。这些数据库针对处理复杂的相互关联数据进行了优化,并提供高效的查询功能。安装必要的依赖项,并建立与所选图数据库的连接。
- 设计并填充知识图谱:定义知识图谱的模式,包括要表示的节点(实体)类型和关系(边)类型。使用特定领域的数据填充图数据库,确保准确捕获实体和关系。可以使用 py2neo(用于 Neo4j)或 Gremlin(用于各种图数据库)等库与数据库交互,创建节点和关系。
- 实现图查询:开发根据用户输入查询知识图谱的函数。使用图数据库的查询语言(如 Neo4j 的 Cypher、JanusGraph 的 Gremlin)构建查询,从知识图谱中检索相关子图或实体。这些查询应旨在根据用户查询提取最相关的信息。
- 与大型语言模型集成:选择一个预训练的语言模型,如 GPT-3、BERT 或 T5,作为 Graph RAG 系统的核心。这些模型可通过 OpenAI 的 API、Hugging Face 的 Transformers 或 TensorFlow 等库访问。初始化大型语言模型及其相关的分词器,为生成回复做好准备。
- 处理检索到的子图:从知识图谱中检索到相关子图或实体后,对其进行处理以提取必要信息。这可能包括将子图转换为文本格式、过滤掉无关细节,或汇总来自多个子图的信息。目标是根据检索到的数据为大型语言模型提供简洁且有价值的上下文。
- 生成回复:将处理后的子图与用户查询相结合,作为大型语言模型的输入。将此输入传递给大型语言模型,生成结合模型已有知识和检索子图提供的上下文的回复。微调大型语言模型的参数,如温度和最大长度,以控制生成回复的质量和连贯性。
- 评估与优化:通过将生成的回复与真实数据对比或进行人工评估,评估回复质量。找出需要改进的地方,如优化图谱模式、改进查询过程或微调大型语言模型。根据这些评估迭代优化 Graph RAG 系统,提升其性能和可靠性。
以下是一个使用 Python、py2neo 与 Neo4j 数据库交互,以及 Hugging Face Transformers 库访问 T5 语言模型的简化 Graph RAG 实现代码片段:
from py2neo import Graph
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# 设置Neo4j连接
graph = Graph("bolt://localhost:7687", auth=("username", "password"))
# 初始化大型语言模型和分词器
model_name = "t5-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
def query_graph(query):
# 根据用户输入构建Cypher查询
cypher_query = f"""
MATCH (e:Entity)-[r]-(n)
WHERE e.name =~ '(?i).{query}.'
RETURN e, r, n
"""
# 执行查询并检索相关子图
results = graph.run(cypher_query).data()
# 处理检索到的子图
context = ""
for result in results:
entity = result['e']['name']
relationship = type(result['r']).__name__
neighbor = result['n']['name']
context += f"{entity} {relationship} {neighbor}. "
return context
def generate_response(query):
# 查询知识图谱
context = query_graph(query)
五、比较图检索增强生成(Graph RAG)和向量检索增强生成(Vector RAG)
在为检索增强生成系统选择 Graph RAG 和 Vector RAG 时,必须考虑具体用例的需求和特点。这两种方法各有优缺点,了解这些有助于做出明智的决策。
Graph RAG 在以下场景中表现出色:实体之间的关系和数据的整体结构对于生成准确且与上下文相关的回复至关重要。通过利用知识图谱的强大功能,Graph RAG 能够捕获和利用数据中内在的语义和层次结构,实现更复杂的推理和推断。这使得 Graph RAG 特别适合医疗、金融和科学研究等领域,在这些领域中,复杂的相互关联数据普遍存在,特定领域的知识至关重要。
另一方面,Vector RAG 在主要关注基于语义相似性高效检索相关信息的场景中表现突出。通过将文本数据表示为稠密向量,Vector RAG 能够实现快速且可扩展的相似度搜索,即使对于大规模知识库也是如此。这使其成为处理大量非结构化或半结构化数据的应用程序(如客户支持聊天机器人、内容推荐系统和信息检索平台)的绝佳选择。
另一个关键考虑因素是 RAG 系统所需的可解释性水平。在这方面,Graph RAG 具有明显优势,因为知识图谱的结构化特性使其推理过程更加透明和可解释。通过遍历图谱并检索相关子图,Graph RAG 可以清晰展示生成回复所使用的信息,增强系统的可信度和问责性。而 Vector RAG 虽然高效,但可能缺乏这种程度的可解释性,因为其检索到的信息基于语义相似性,而非明确的关系。
最终,Graph RAG 和 Vector RAG 的选择取决于应用程序的具体需求。如果用例需要深入理解复杂关系、受益于特定领域知识,并且要求较高的可解释性,Graph RAG 可能是更好的选择。然而,如果主要关注从大规模非结构化数据中高效检索语义相似的信息,Vector RAG 可能是更合适的方案。
值得注意的是,这两种方法并非相互排斥,存在构建结合 Graph RAG 和 Vector RAG 优势的混合系统的可能性。