在全球安全需求日益增长的背景下,传统安防监控系统逐渐暴露出局限性,难以满足实时、精准、智能的安全防范需求。视频理解技术凭借强大的图像分析和数据处理能力,成为安防领域智能化升级的核心驱动力。据市场研究机构预测,未来五年全球安防视频分析市场规模将以年均 18% 的速度增长,这项技术正重塑着安防行业的格局。
随着城市化进程的加速和社会治安形势的复杂化,传统人工监控已无法满足现代安防的需求。海量监控视频数据的涌现,对实时分析、快速响应和精准决策提出了更高要求。视频理解技术作为计算机视觉与人工智能的交叉领域,能够自动解析视频内容,提取关键信息,为安防工作提供有力支持。从智能交通管理到公共安全防范,从商业场所监控到边境安防,视频理解技术的应用范围不断拓展,展现出巨大的发展潜力。
一、视频理解技术在安防监控场景中的具体应用
1.实时异常行为监测
异常行为识别原理
异常行为识别融合了光流法与深度学习模型的优势。光流法基于视频帧间像素点的运动向量,构建运动轨迹图谱。例如,在人流密集的地铁站,光流法能精准捕捉个体运动方向与速度,形成动态的运动轨迹网络。深度学习模型则通过卷积神经网络(CNN)与循环神经网络(RNN)结合,学习正常行为模式。以公共场所监控为例,系统在训练阶段分析大量行人正常行走、驻足等行为数据,建立行为特征库,当检测到偏离正常模式的行为时触发警报。
典型异常行为监测实现方式
打架行为检测:通过关键点检测算法,实时追踪人体关节点,如手腕、肘部、肩部等。当检测到关节点出现剧烈碰撞、快速摆动等异常轨迹组合时,结合预设的打架行为模式库,判断是否发生打架事件。在某大型商场的应用中,该系统成功将打架事件响应时间缩短至 30 秒内。
奔跑行为检测:利用目标跟踪算法锁定运动目标,计算其速度与轨迹曲率。当目标速度超过设定阈值且轨迹出现突然转向等异常变化时,判定为奔跑行为。在机场安检区域,该技术有效识别出携带危险物品的快速移动人员。
闯入禁区检测:采用虚拟围栏技术,在监控画面中划定电子边界。当检测到目标越过边界时,系统自动触发警报。某军事禁区部署的闯入检测系统,误报率低于 0.5%,显著提升了区域安全性。
2.人员身份识别
人员身份识别的重要性
人员身份识别在门禁管理与犯罪侦查中发挥关键作用。在企业园区,人脸识别门禁系统实现 “刷脸” 通行,替代传统门禁卡,提升安全性与通行效率。在犯罪侦查领域,通过视频监控中的人脸识别技术,警方成功破获多起跨区域盗窃案件,大幅缩短破案周期。
应用案例分析
大型活动安保:在国际体育赛事中,人脸识别系统部署于各出入口,与公安系统数据库实时对接。通过多摄像头协同识别,实现对重点人员的精准监控,保障赛事安全。某大型演唱会期间,该系统成功识别出 3 名在逃人员。
公共场所核查:在火车站、地铁站等交通枢纽,人脸识别技术与实名制购票系统联动,自动核验旅客身份信息。某一线城市地铁站应用后,冒用他人身份进站事件减少 90% 以上。
二、视频理解技术在安防领域面临的挑战
1.复杂光线环境的影响
强光环境:正午阳光下,监控画面易出现过曝现象,导致人物面部细节丢失,影响人脸识别与行为分析准确性。某户外监控项目统计显示,强光环境下识别错误率高达 30%。
逆光场景:逆光拍摄时,人物面部处于阴影区域,特征信息难以提取。在城市道路监控中,逆光方向的车牌识别准确率下降约 40%。
低光照条件:夜晚或昏暗环境下,图像噪点增多,画面模糊。传统监控摄像头在低光照下的有效识别距离不足正常情况的一半。
2.海量视频数据处理压力
算力需求:实时处理多路高清视频流,对计算设备性能要求极高。处理 1080P 分辨率、30 帧 / 秒的视频,单路数据处理每秒需数十亿次运算。
存储与传输:海量视频数据的存储与传输成本高昂。以一个中等规模的城市安防监控系统为例,每日产生的数据量可达数百 TB,对存储设备与网络带宽造成巨大压力。
效率与精度平衡:轻量化模型虽能提高处理速度,但往往牺牲识别精度;复杂模型虽能提升准确性,但计算资源消耗大,难以满足实时性要求。
三、应对挑战的解决策略
1.针对复杂光线环境
硬件优化:采用高动态范围(HDR)摄像头,自动调节曝光参数,在强光与逆光环境下保留更多细节。搭配红外补光灯与激光补光设备,提升低光照环境下的成像质量。
算法改进:研发自适应图像增强算法,根据光线条件动态调整图像对比度与亮度。结合深度学习去噪模型,有效去除图像噪点,恢复细节信息。
数据增强:在模型训练阶段,通过模拟不同光照条件生成训练数据,增强模型对复杂光线环境的适应性。例如,利用图像合成技术生成过曝、逆光、暗光等场景的模拟图像,扩大训练数据集。
2.应对海量数据处理
边缘计算:将部分数据处理任务下沉至摄像头端或边缘服务器,减少数据传输量。在智慧社区安防系统中,边缘计算设备可直接完成行为分析与异常检测,仅将关键信息上传至云端,降低网络压力。
分布式架构:采用分布式存储与计算技术,将数据分散存储于多个节点,提高存储容量与读写速度。通过分布式计算框架并行处理视频数据,提升整体处理效率。
轻量化模型:研发基于知识蒸馏、模型剪枝等技术的轻量化模型。例如,MobileNet 系列模型在保持较高识别精度的同时,大幅减少计算量,适用于资源受限的安防设备。
四、开源平台
在安防领域,开源项目凭借其开放性和可定制性,为视频理解技术的应用与发展注入强大活力。
- frigate:这是一个专为视频监控与物体检测打造的开源项目,将机器学习与计算机视觉技术有机结合。它支持实时对象检测以及人脸识别,在家庭安全、监控及自动化场景中应用广泛。其显著特点在于,能无缝接入遵循ONVIF/RTSP协议的摄像头,实现实时查看或录像回放,还可把实时录像存储至NAS本地,达成NAS充当NVR的功能。哪怕是普通摄像头接入后,借助frigate的AI能力,也能进行物体检测、分析监控画面并实时提醒,同时可划定安全区域。该项目开源免费,对摄像头数量没有限制,并且能够接入HomeAssistant系统,实现智能联动,极大地拓展了应用场景与功能。
- VideoPipe:这是一个以C++编写的视频分析结构化框架,具备依赖少、易集成的特性。它采用独特的管道设计,各个节点相互独立且可自由搭配,能够构建多样化的视频分析应用,适用于视频结构化、图片搜索、人脸识别,以及交通/安防领域的行为分析(如交通事件检测)等场景。VideoPipe支持多种视频流协议用于流读取/推送,集成OpenCV与GStreamer库实现高效的视频解码/编码,并提供硬件加速。其内置多种深度学习模型用于算法推理,集成先进追踪算法实现目标跟踪,能基于目标跟踪开展行为分析,还能将分析得到的结构化数据转发至指定目的地,支持录制与截图、屏幕显示等功能。无论是配备专业加速卡的高端服务器,还是普通的CPU计算机,它都能稳定运行,项目内还包含丰富的示例代码,方便开发者上手。
- VideoRefer:由浙江大学与阿里达摩学院联合推出,聚焦于提升视频大型语言模型(Video LLMs)的空间 - 时间理解能力。该项目能够针对视频中的任意对象展开细粒度的感知与推理,支持单帧和多帧输入,适用于各类复杂场景。其核心组件涵盖VideoRefer - 700K数据集、VideoRefer模型和VideoRefer - Bench基准。通过这些组件,VideoRefer可实现对视频内容精准理解、推理及检索,推动细粒度视频理解技术发展。具体功能包括对视频对象进行精确感知,分析对象间复杂关系,基于视频内容推理预测,以及依据用户指令进行视频对象检索和多模态交互等。它通过多智能体数据引擎生成高质量对象级视频指令数据,利用空间 - 时间对象编码器提取对象特征,将多源信息融合后送入预训练大语言模型解码,以得到细粒度语义理解结果 。
- 思通数科AI视频监控系统:此系统专为监狱或看守所等高安全场所设计,不过其技术理念和部分功能也可为其他安防场景提供参考。它能够实时分析囚犯行为,精准识别暴力冲突、情绪失控等异常事件并自动报警。借助人体姿态识别技术,可检测摔倒、攀爬等异常动作。该系统在低光环境下借助图像增强技术和行为分析,依然能保持较高的识别精度。通过长期积累行为数据,还可识别囚犯的情绪变化信号。它支持多种硬件设备接入,实现监控数据实时传输,管理人员可通过多终端获取数据与报警信息。系统还支持根据实际需求进行定制化训练,其人体姿态识别精度超95%,预警时间小于5秒,可24小时不间断运行,并且完全开源,用户能免费下载使用并按需定制开发 。
五、结言
视频理解技术在安防领域已取得显著应用成果,从实时异常行为监测到精准人员身份识别,有效提升了安防系统的智能化水平。然而,复杂环境与海量数据带来的挑战仍需持续攻克。未来,随着硬件技术的进步、算法的不断创新以及多模态融合技术的发展,视频理解技术将向更高精度、更强适应性和更高效能方向演进,为安防领域提供更可靠的技术保障,守护社会安全与稳定。