Transformer在自然语言处理领域取得成功后,也被广泛应用于视频理解领域。基于Transformer的架构能够更好地处理视频中的长序列信息,捕捉视频帧之间的长期依赖关系,在视频动作识别、场景理解等任务中表现出优异的性能,成为当前视频理解领域的热门研究方向之一。
一、核心设计思路:从NLP到视频理解的迁移
Transformer的核心优势在于自注意力机制(SelfAttention)和分层编码结构,能够建模长序列中的全局依赖关系。将其应用于视频领域时,需解决以下关键问题:
1.时空建模:
视频包含空间维度(单帧图像)和时间维度(多帧序列),需同时捕捉空间特征(如物体外观)和时间特征(如动作时序)。
传统方法(如3D卷积)通过时空卷积建模,但感受野有限;Transformer通过自注意力机制直接建模全局时空依赖。
2.输入表示:
将视频帧拆分为图像块(Patch)序列,类似NLP中“单词”的概念,每个Patch对应一个时空token(包含空间位置和时间戳信息)。
3.分层特征学习:
借鉴ViT(Vision Transformer)的分层结构,通过多层Transformer编码器逐步提取更抽象的时空特征。
二、典型架构与技术细节
1.TimeSformer(Facebook, 2021)
核心思想:分离空间注意力和时间注意力,降低计算复杂度。
架构:
输入:将视频序列划分为多个帧,每帧拆分为图像块,生成空间时间联合token(包含位置编码和时间编码)。
注意力机制:
空间注意力:在单帧内对所有图像块进行自注意力计算,捕捉空间依赖。
时间注意力:在同一图像块的跨帧序列上进行自注意力计算,捕捉时间依赖。
优势:减少计算量(复杂度从O((HW)2T2)降至O(HW(HW+T))),适用于长视频。
2.Video Swin Transformer(2021)
核心思想:引入滑动窗口(Sliding Window)和分层特征金字塔,适配视频的多尺度时空建模。
架构:
分层处理:
第1阶段:对视频帧下采样,生成粗粒度token(如4×4像素块),降低分辨率。
后续阶段:通过滑动窗口机制在局部窗口内进行时空自注意力计算,窗口随层级增大而移动,实现跨窗口交互。
时间建模:在窗口内引入相对时间编码,建模跨帧的时间依赖。
优势:兼顾局部细节和全局上下文,计算效率优于全局自注意力。
3.Cinet(Google, 2021)
核心思想:结合卷积和Transformer,利用卷积提取局部时空特征,Transformer建模全局依赖。
架构:
前端:3D卷积网络提取初始时空特征(减少输入token数量)。
后端:Transformer编码器对卷积特征进行全局交互,输出分类或预测结果。
优势:平衡计算效率和建模能力,适用于实时视频任务。
4.X3DTransformer(2022)
核心思想:在X3D(高效3D卷积网络)基础上嵌入Transformer层,提升长程时序建模能力。
架构:
在3D卷积网络的深层插入Transformer编码器,对高维特征进行全局时间注意力计算。
优势:利用卷积的局部归纳偏置和Transformer的全局建模能力,提升动作识别精度。
三、关键技术与挑战
1.时空编码(SpatioTemporal Encoding)
位置编码:除空间位置外,需为每个token添加时间戳编码(如正弦余弦函数或可学习参数),区分不同帧的时序关系。
挑战:长视频中时间编码的稳定性(如超过一定时长后编码区分度下降)。
2.计算效率优化
问题:视频数据的时空维度(H×W×T)导致自注意力计算复杂度呈平方级增长(O((HW T)^2)),难以处理长视频。
解决方案:
分解时空注意力:如TimeSformer分离空间和时间注意力,或采用轴向注意力(Axial Attention)分别处理空间和时间维度。
稀疏注意力:仅计算局部窗口或关键帧的注意力(如Sparse Transformer)。
下采样:对视频帧或图像块进行降采样,减少token数量(如Video Swin Transformer的分层策略)。
3.归纳偏置(Inductive Bias)
传统卷积的优势:利用局部性和权重共享减少参数,适用于小数据集。
Transformer的不足:缺乏先验知识,需大量数据训练。
改进方向:混合架构(如Cinet)或引入卷积式位置编码,增强模型对局部特征的敏感度。
四、开源项目
1.TimeSformer:由Facebook Research团队开发,基于PyTorch实现。该项目提出了一种新的视频分类框架,通过时空注意力机制,在多个视频动作识别基准测试中,如Kinetics 400数据集,达到了先进的性能。
2.Video Swin Transformer Pytorch:是对原始Video Swin Transformer的Pytorch实现。它将Swin Transformer应用于视频数据,以局部窗口方式进行注意力计算,降低了计算复杂度。该项目提供了友好的接口和便捷的预训练模型加载方式,在Kinetics 400和Kinetics 600数据集上有出色表现。
3.ViViT PyTorch:由Rishikesh Khare创建,是对发表于“A Video Image Tokenizer for Transformers”研究的PyTorch实现。它将视频视为一序列的图像帧,利用Transformer的自注意力机制捕捉时间维度上的动态信息,可用于动作识别和视频生成等任务。
4.EasyAnimate:由阿里云人工智能平台PAI团队开发,是一个基于Transformer架构的高性能长视频生成项目。它将原本为2D图像合成设计的DiT框架扩展到3D视频生成领域,支持文本到视频和图像到视频的生成方式,能生成高分辨率、长时间的视频,还允许用户训练自己的模型。
5.SAM 2.1:由Meta推出,全称为Segment Anything Model 2.1,是先进的视觉分割模型。它基于简单的Transformer架构和流式记忆设计,支持图像和视频分割、实时视频处理、用户交互式分割和多对象跟踪等功能。
五、发展趋势
1.轻量化设计:
探索更高效的注意力机制(如动态稀疏注意力)或知识蒸馏,适配移动端设备。
2.多模态融合:
结合文本、音频等模态,实现更复杂的视频理解任务(如视频问答、字幕生成)。
3.长视频建模:
开发支持小时级视频的长序列Transformer(如引入记忆机制或层次化聚类)。
4.自监督学习:
利用无标注视频数据预训练(如对比学习、掩码建模),减少对大规模标注数据的依赖。
基于Transformer的视频架构通过自注意力机制突破了传统卷积的局部建模限制,在长程时空依赖建模中表现优异。尽管计算效率和小数据泛化能力仍是挑战,但混合架构、轻量化设计和自监督学习等方向正在推动其向更实用的场景发展。