高翔slam14讲-笔记1

slam基本概念

  • slam:搭载特定传感器的主体,在没有先验环境信息的情况下,于运动过程中建立环境的模型,同时估计自己的运动
  • 地图模型:广义的地图,百度地图是一种地图,空间环境中离散的点,用于定位的,在slam中也叫地图
  • slam应用领域:机器人、无人机、无人驾驶、增强现实
  • 入门相关书籍:The Bible: Multiple View Gemetry in Computer Vision
    State Estimation for Robotics: A Matrix Lie Group Approch
    Probabilistic Robotics
  • SLAM相关的两类传感器:
    安装于环境中的,如二维码标识、GPS、导轨、磁条
    携带于机器人本体上,如IMU, 激光、相机
  • 视觉SLAM相机:
    单目:没有深度
    双目:通过视差计算深度 stereo
    RGBD:通过物理方法测量深度,物理手段测量深度,如结构光
    ToF,主动测量,功耗大,深度值准确,可测得每个像素的深度,
    量程小,一般几十米,易受干扰,室外难以适用(结构光易受自然光干扰)
  • 视觉SLAM框架:前端VO,后端Optimization, 回环检测:Loop Closing, 建图:Mapping

slam问题的最简单描述

======= 未完===========

线性代数知识

向量的外积(叉乘)
概述:两个向量的外积,又叫叉乘,其运算结果是一个向量而非标量,两个向量的外积与这两个向量组成的坐标平面垂直。
定义: 向量ab的外积a×b是一个向量,其长度等于|a×b|=|a||b|sin(a,b),其方向正交于ab,并且,(a,b,a×b)构成右手系。特别的,0×a=a×0,此外,对任意向量a,a×a=0
对于向量a和向量b
在这里插入图片描述
ab的外积公式为:
在这里插入图片描述
其中:
在这里插入图片描述

向量外积的几何意义:
(事实上,三维以上就没有几何意义了,因此线性代数里讨论几何意义的意义不大,仅起到辅助理解作用)
在三维几何里,向量a和向量b的外积结果是一个法向量,该向量垂直于ab向量构成的平面。在3D图像学中,外积的概念非常有用,可以通过两个向量的外积,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值