本文收录于AAAI2020,作者来自香港科技大学。简单说一下摘要部分:我们都知道,图中具有一些很常见的结构,例如三角结构或者正方形结构,这些结构对分析网络现象非常重要,但是当前的GNN在识别一些常见的结构模式方面还存在较大的缺陷。本文提出了GraLSP模型,这是一种通过随机匿名漫步明确地将局部结构模式合并到邻域聚合中的GNN框架。其核心思想是首先通过随机的匿名漫步来捕获局部图结构,然后这些随机漫步结果被输入到特征聚合中,之后利用各种机制来处理结构特征的影响,包括自适应接受半径、注意力和放大,本文模型在多个数据集中获得了较好的结果。源码在这
Introduction
图除了具有节点特征之外还具有结构模式,常见的结构模式例如分子网络中的功能,信息流模式以及社会现象等。这些结构模式的作用通常是节点特征无法提供的。当前的GNN模型虽然 对节点的邻域进行了编码,但其不能确保具有不同结构模式的节点生成不同的结果,即使两个节点的语义差别很大。
这幅图是社交网络中具有强联系特征的三元闭包</