图神经网络(二十)GraLSP: Graph Neural Networks with Local Structural Patterns

GraLSP是AAAI2020提出的一种结合随机匿名漫步来捕捉局部图结构的GNN模型。该模型通过匿名游走提取结构模式,并通过自适应接受半径、注意力和放大机制在邻域聚合中融合结构信息,解决了现有GNN无法有效识别常见结构模式的问题。实验表明,GraLSP在多个数据集上表现优异。
摘要由CSDN通过智能技术生成

本文收录于AAAI2020,作者来自香港科技大学。简单说一下摘要部分:我们都知道,图中具有一些很常见的结构,例如三角结构或者正方形结构,这些结构对分析网络现象非常重要,但是当前的GNN在识别一些常见的结构模式方面还存在较大的缺陷。本文提出了GraLSP模型,这是一种通过随机匿名漫步明确地将局部结构模式合并到邻域聚合中的GNN框架。其核心思想是首先通过随机的匿名漫步来捕获局部图结构,然后这些随机漫步结果被输入到特征聚合中,之后利用各种机制来处理结构特征的影响,包括自适应接受半径、注意力和放大,本文模型在多个数据集中获得了较好的结果。源码在这

Introduction

图除了具有节点特征之外还具有结构模式,常见的结构模式例如分子网络中的功能,信息流模式以及社会现象等。这些结构模式的作用通常是节点特征无法提供的。当前的GNN模型虽然 对节点的邻域进行了编码,但其不能确保具有不同结构模式的节点生成不同的结果,即使两个节点的语义差别很大。

在这里插入图片描述
这幅图是社交网络中具有强联系特征的三元闭包</

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码匀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值