pcl的kdtree与nanoflann速度比较

这篇博客对比了PCL库和nanoflann库在进行10万点云数据的KdTree搜索时的效率。结果显示,nanoflann在执行相同任务时比PCL的KdTree快约33毫秒,表明nanoflann在搜索性能上有优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

typedef KDTreeSingleIndexAdaptor<L2_Simple_Adaptor<double, PointCloud_flann<double> >, PointCloud_flann<double>, 3> my_kd_tree;
pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud(new pcl::PointCloud<pcl::PointXYZ>);
// pcl kdtree
pcl::KdTreeFLANN<pcl::PointXYZ>::Ptr pcltree(new pcl::KdTreeFLANN<pcl::PointXYZ>);
pcltree->setInputCloud(p_cloud);
double SearchRadius = 0.3;
float ppp = clock();
for (int i = 0; i < 100000; i++)
{
	std::vector<int> k_indices; std::vector<float> distance;
	pcltree->radiusSearch(p_cloud->at(i), SearchRadius, k_indices, distance);
}	

// nanoflann tree
PointCloud_flann<double> cloud_flann;
cloud_flann.pts.resize(p_cloud->size());
for (int i = 0; i < p_cloud->size(); i++)
{
	cloud_flann.pts[i].x = p_cloud->points[i].x;
	cloud_flann.pts[i].y = p_cloud->points[i].y;
	cloud_flann.pts[i].z = p_cloud->points[i].z;
}
my_kd_tree kd_tree(3, cloud_flann, KDTreeSingleIndexAdaptorParams(10));
kd_tree.buildIndex();
const double query_radius_sq = 0.3*0.3;
for (int i = 0; i < 100000; i++)
{
	double query_p[3] = { cloud_flann.pts[i].x, cloud_flann.pts[i].y, cloud_flann.pts[i].z };
	std::vector<std::pair<size_t, double>> matches;
	nanoflann::SearchParams searchparams;
	kd_tree.radiusSearch(query_p, query_radius_sq, matches, searchparams);
}

结果:nanoflann的速度比pcl的kdtree会快点,10w个点差33ms

### Small GICP 算法实现 Small GICP (Generalized Iterative Closest Point) 是一种高效的点云配准算法,旨在提高传统 GICP 方法的速度和效率。此方法不仅实现了显著的速度提升,还保持了高精度的结果[^1]。 #### 核心优化策略 为了达到更高的执行效率,small_gicp 进行了一系列针对性的改进: - **全面并行化**:采用 OpenMP 或 Intel TBB 技术来加速预处理阶段(如降采样、构建 KdTree)以及实际的配准过程,从而充分挖掘现代多核 CPU 的潜力。 - **最小依赖项设计**:整个库只依赖于几个轻量级组件——Eigen 用于矩阵运算;nanoflann 负责快速最近邻搜索;Sophus 提供几何变换功能。这种低耦合架构使得 small_gicp 更易于移植和维护。 - **高度可配置性**:借助 C++ 模板特性允许开发者轻松调整内部参数设置,比如指定不同的数据结构或修改匹配准则等,满足特定应用场景下的需求。 ```cpp // 示例代码展示如何初始化 small_gicp 并完成一次简单的点云配准操作 #include "small_gicp.h" int main() { // 创建两个点云集实例 pcl::PointCloud<pcl::PointXYZ>::Ptr source(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr target(new pcl::PointCloud<pcl::PointXYZ>); // 加载源点云和目标点云... // 初始化 small_gicp 解算器对象 small_gicp::Solver solver; // 设置初始猜测姿态(如果已知) Eigen::Isometry3f initial_guess = ...; // 执行配准 bool success = solver.align(source, target, &initial_guess); } ``` ### 应用案例 由于 small_gicp 出色的时间性能表现及其良好的兼容性和灵活性,该工具非常适合应用于各种需要频繁进行大规模三维空间数据分析的任务中,特别是在机器人领域内的 SLAM (Simultaneous Localization And Mapping) 方面有着广泛的应用前景[^5]。 例如,在 ROS 中开发自定义 SLAM 节点时可以选择集成 small_gicp 来增强系统的实时响应能力;而在自动驾驶汽车的研发过程中,则可以通过引入这一高效可靠的点云配准方案进一步改善车辆定位精度。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值