关于机器学习模型性能的一些哲学思想

这篇博客探讨了机器学习领域的几个核心概念,包括没有免费午餐定理(NoFreeLunchTheorem),它表明没有一种算法在所有问题上都最优;奥卡姆剃刀原理(Occam’s Razor),提倡简单性原则;以及集成学习(EnsembleLearning),通过结合多个模型来提升预测性能。此外,还讨论了频率学派与贝叶斯学派在概率解释上的分歧,揭示了机器学习中常见的哲学思辨。
摘要由CSDN通过智能技术生成
没有免费午餐原理(No Freee Lunch Theorem)

丑小鸭原理(Ugly Duckling Theorem)

奥卡姆剃刀原理(Occam’s razor)

参考资料 

主要讲的是因果关系与因果推断

看似毫不相干,哲学与机器学习竟有如此大的交集?_CSDN资讯-CSDN博客

1. 没有免费的午餐定理(No Free Lunch Theorem)
2. 奥卡姆剃刀定理(Occam’s Razor - Ockham定理)- 少即是多
3. 集成学习(Ensemble Learning) - 三个臭皮匠的智慧
4. 频率学派(Frequentists)和贝叶斯学派(Bayesian) - 剑宗与气宗之争
5. 后记 - 无处不在的妥协

机器学习中的“哲学”_weixin_33939380的博客-CSDN博客 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值