ActivePathways--整合多维组学通路分析

概述

功能:ActivePathways可通过集成多个分子数据集和路径注释来提高系统对健康和疾病中细胞组织的理解。
软件安装:https://github.com/reimandlab/ActivePathways
分析原理:
在这里插入图片描述如果想了解更多,可参考这篇文章

输入文件

ActivePathways的输入文件只需要两类,一个是p-values(这里的P值可以是差异基因表达、基因必要性、突变或拷贝数变异负荷等的显著性P值)的数值型矩阵(该矩阵不能包含缺失值),另一个文件是一个GMT格式的基因集(作者建议使用GO 或者 Reactome 通路数据)。

在这里插入图片描述

P值矩阵示例:data.txt

在这里插入图片描述

gmt文件示例: go.gmt

在这里插入图片描述

分析

代码示例

可以把各种整理好的gmt文件放到安装路径下面会比较方便调用。比如我的放在"/public/analysis/xxx/anaconda3/envs/GDCRNATools/lib/R/library/activePathways/extdata/"。

library(activePathways)
scores <- read.table('data.txt'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值