概述
功能:ActivePathways可通过集成多个分子数据集和路径注释来提高系统对健康和疾病中细胞组织的理解。
软件安装:https://github.com/reimandlab/ActivePathways
分析原理:
如果想了解更多,可参考这篇文章。
输入文件
ActivePathways的输入文件只需要两类,一个是p-values(这里的P值可以是差异基因表达、基因必要性、突变或拷贝数变异负荷等的显著性P值)的数值型矩阵(该矩阵不能包含缺失值),另一个文件是一个GMT格式的基因集(作者建议使用GO 或者 Reactome 通路数据)。
P值矩阵示例:data.txt
gmt文件示例: go.gmt
分析
代码示例
可以把各种整理好的gmt文件放到安装路径下面会比较方便调用。比如我的放在"/public/analysis/xxx/anaconda3/envs/GDCRNATools/lib/R/library/activePathways/extdata/"。
library(activePathways)
scores <- read.table('data.txt'