矩阵相关性质复习

一. 排列

定义1:作为定义n 级行列式的准备,我们先来了解一下排列的性质。
由1,2,⋯, n 组成的一个有序数组称为一个n 级排列
定义2:在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序,一个排列中逆序的总数就称为这个排列的逆序数
例如:2431 中,21,43,41,31 是逆序,2431 的逆序数就是4。而45321 的逆序数是9。排列 j 1 j 2 ⋯ j n j_1 j_2 ⋯ j_n j1j2jn的逆序数记为 τ ( j 1 j 2 ⋯ j n ) τ( j_1 j _2 ⋯ j_n ) τ(j1j2jn)
定义3:逆序数为偶数的排列称为偶排列;逆序数为奇数的排列称为奇排列
把一个排列中某两个数的位置互换,而其余的数不动,就得到另一个排列.这样一个变换称为一个对换。例如,经过1,2 对换,排列2431 就变成了1432,排列2134 就变成了1234。显然,如果连续施行两次相同的对换,那么排列就还原了。由此得知,一个对换把全部n 级排列两两配对,使每两个配成对的n 级排列在这个对换下互变。
定理1:对换改变排列的奇偶性。这就是说,经过一次对换,奇排列变成偶排列,偶排列变成奇排列。

二.行列式计算

在理解了上面的排列之后就可以明白行列式计算的定义了。
行列式计算定义
n 级行列式等于所有取自不同行不同列的n 个元素的乘积
a 1 j 1 a 2 j 2 ⋯ a n j n (1) a_{1j_1}a_{2 j2}⋯ a_{njn} \tag {1} a1j1a2j2anjn(1)
的代数和,这里 j 1 j 2 ⋯ j n j_1 j_2 ⋯ j_n j1j2jn 是1,2,⋯, n 的一个排列,每一项(1)都按下列规则带有符号:当 j 1 j 2 ⋯ j n j_1 j_2 ⋯ j_n j1j2jn 是偶排列时, (1)带有正号,当 j 1 j 2 ⋯ j n j_1 j_2 ⋯ j_n j1j2jn是奇排列时,(1)带有负号。这一定义可写成:
在这里插入图片描述
这里 Σ j 1 j 2 ⋯ j n Σ _{j1j2⋯ jn} Σj1j2jn表示对所有n 级排列求和。

三.矩阵的特征值之和等于矩阵的迹

首先,求矩阵特征值相信大家都知道,就是通过下面这个公式等于0求出特征值的:
在这里插入图片描述
根据上面学到的排列和行列式计算,我们知道如果第一行没有选择 λ − a 11 \lambda-a_{11} λa11这个元素,得到的 a 1 j 1 a 2 j 2 ⋯ a n j n a_{1j_1}a_{2 j2}⋯ a_{njn} a1j1a2j2anjn λ \lambda λ的幂最多只能为 λ n − 2 \lambda^{n-2} λn2,得不到 λ n − 1 \lambda^{n-1} λn1所以只有选择对角线元素相乘才能得到 λ n − 1 \lambda^{n-1} λn1 λ n \lambda^{n} λn 。即:
( λ − a 11 ) ( λ − a 22 ) ( λ − a 33 ) . . . . . . ( λ − a n n ) (\lambda-a_{11})(\lambda-a_{22})(\lambda-a_{33})......(\lambda-a_{nn}) (λa11)(λa22)(λa33)......(λann)
λ n − 1 \lambda^{n-1} λn1的系数为:
− 1 ( a 11 + a 22 + a 33 + . . . . . . + a n n ) -1(a_{11}+a_{22}+a_{33}+......+a_{nn}) 1(a11+a22+a33+......+ann)

因为代数基本定理, d e t ( λ I − A ) det(\lambda I-A) det(λIA) 有n个根,它们就是n个特征值,也就是说: d e t ( λ I − A ) = ( λ − λ 1 ) ( λ − λ 2 ) ( λ − λ 3 ) . . . . . . ( λ − λ n ) det(\lambda I-A)=(\lambda-\lambda_1)(\lambda-\lambda_2)(\lambda-\lambda_3)......(\lambda-\lambda_n) det(λIA)=(λλ1)(λλ2)(λλ3)......(λλn)
λ n − 1 \lambda^{n-1} λn1 这一项的系数恰好是 − ( λ 1 + λ 2 + . . . . . . λ n ) -(\lambda_1+\lambda_2+......\lambda_n) (λ1+λ2+......λn)
所以,矩阵的特征值之和等于矩阵的迹。

四. 矩阵特征值的积=行列式的值

其实:
d e t ( λ I − A ) = λ n − ( a 11 + a 22 + ⋯ + a n n ) λ n − 1 + ⋯ + ( − 1 ) n ∣ A ∣ det(\lambda I-A)=\lambda^{n}-\left(a_{11}+a_{22}+\cdots+a_{n n}\right) \lambda^{n-1}+\cdots+(-1)^{n}|A| det(λIA)=λn(a11+a22++ann)λn1++(1)nA
为什么最后一项常数项是这样呢?因为:
d e t ( λ I − A ) det(\lambda I-A) det(λIA) 中另 λ = 0 \lambda=0 λ=0得常数项 ∣ − A ∣ = ( − 1 ) n ∣ A ∣ |-A|=(-1)^{n}|A| A=(1)nA
对比:
d e t ( λ I − A ) = ( λ − λ 1 ) ( λ − λ 2 ) ( λ − λ 3 ) . . . . . . ( λ − λ n ) det(\lambda I-A)=(\lambda-\lambda_1)(\lambda-\lambda_2)(\lambda-\lambda_3)......(\lambda-\lambda_n) det(λIA)=(λλ1)(λλ2)(λλ3)......(λλn)
可得:
矩阵特征值的积=行列式的值

五、不同特征值对应的特征向量线性无关

参考链接

六、实对称矩阵不同特征值对应特征向量正交

参考链接

七、矩阵相似及对角化

矩阵相似定义:设A、B都是n阶矩阵,若存在可逆矩阵P,使得:
P − 1 A P = B P^{-1} A P=B P1AP=B
则称A、B相似。

可对角化充要条件:矩阵A有n个线性无关的特征向量(其实就是上面的P矩阵里面是B的特征向量,A是由B的特征值组成的对角阵,P要可逆肯需要特征向量线性无关呀)。(证明待补充)
推论: 如果矩阵A有n各不同的特征值,则A可对角化(由五可知:不同特征值对应的特征向量线性无关)。

参考链接
参考书籍:高等代数北大版

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值