论文
论文题目:Calibrationless Parallel Imaging Reconstruction Based on Structured Low-Rank Matrix Completion
论文作者:Shin PJ, Larson PE, Ohliger MA, Elad M, Pauly JM, Vigneron DB, Lustig M
论文期刊:Magn Reson Med.
年份:2014.
论文主思路
这篇论文所提出的重建方法针对K空间下采样的数据没有包含ACS数据。其将K空间数据按照窗口滑动形式构造一个块Hankel矩阵(block-wise Hankel matrix),也即一个大矩阵中包含多个Hankel矩阵。而论文中提及块Hankel矩阵是秩亏的,除了矩阵自身的结构之外,另一个原因是多线圈数据之间的线性相关性,因此K空间数据重建问题可以转化为一个低秩矩阵的插值问题。
论文算法步骤
- 将K空间数据转换成块Hankel矩阵,其中初始的K空间数据是机器下采样采集回来的数据。
- 利用SVD将块HanKel矩阵对应的MRI数据分解成有信号子空间和噪声子空间,保留主成分重新构造新的块Hankel矩阵,其中保留多少个奇异值是人为设置的。
- 新的块HanKel矩阵再次转换成K空间数据的形式(即多个coil的数据),其中K空间每个数据由块Hankel矩阵对应的位置取平均得到。
- K空间的数据要利用论文中提及的Cadzow算法再改变一次,在论文附录中证明了如果是Cartesian采样的话,本质上就相当于不改变采样点的数据,non-Cartesian采样的话就只能采用近似计算。
- 最后计算当前K空间数据和上一次误差大小,太小就退出循环,否则重第一步开始。
不懂之处
一般有ACS数据时就利用calibration方法,要么用ACS估计出权重对K空间数据进行插值,要么就估计灵敏度。论文标题叫Calibrationless Parallel Imaging Reconstruction,作者又把这篇论文的方法叫做simultaneous autocalibrating and K-space estimation (SAKE), 论文的DIscussion部分说道:“In the SAKE method developed in this study, calibration is done implicitly by enforcing the data matrix to be a structured low-rank matrix. As a result of sensitivity encoding, any (vectorized) blocks of k-space data lie in a low dimensional subspace. Here, we have shown that calibration can be done without explicitly extracting the subspace information by exploiting the low dimensionality of the signal subspace.”。前面说自己是无校准后面又说自己在暗中校准? 6! 也可能是我理解错了吧。