DAU和MAU的分析

DAU(日活)

单日活跃用户量,反应产品短期用户活跃度

MAU(月活)

单月活跃用户量,反应产品长期用户活跃度

DAU和MAU的关系

日活和月活的比值乘以30等于用户月平均登录天数。
日活和月活的比值高,代表一个月有使用产品的用户中,每天都使用产品的用户比例高,即使用频率高,用户对产品的依赖性强,同时也说明用户粘度较强。另一方面,也代表了用户的流失率低,留存率高。
日活和月活的比值低,所有结论相反,用户使用频率低,依赖性弱,粘度较弱,用户流失率高,留存率低。

  • 日活和月活的比值变高,日活增加显著。说明产品的改动或者啥大新闻让部分沉默用户苏醒,但是这个改动和大新闻大多触及到产品已有老用户,这种情况下我们应该加大对产品新功能的推广和宣传,引导更多的新用户成为我们的活跃用户。
  • 日活和月活的比值变高,月活减少显著。说明非忠实用户的流失变得严重,对于一部分刚需的用户我们可以保留下来,但是对于不是刚需的用户我们无法挽留,这种情况下我们应该在保证核心功能的基础上进行功能多元化的探索,满足更多非刚需非忠实用户的需求。
  • 日活和月活的比值变低,日活减少显著。说明我们的核心功能出现了问题或者外界的影响造成了用户对产品本身的恐慌,像什么某某某P2P跑路了等等,导致原本使用产品的用户跳到竞品或者不再使用,这种情况下我们应该分析竞品的动向,确保我们的核心功能各方面使用体验达到最优,才能挽留用户。
  • 日活和月活的比值变低,月活增加显著。说明产品的改动或者外界的推广让短期用户活跃度提升,但是这个改动和影响不具备可持续性,可能是用户玩一下就腻了的快死型功能,比如脸萌,足迹这种功能,这种情况下我们要思考如何增加用户的粘度,减少用户流失。
MAU (月活跃用户) DAU (日活跃用户) 的预测对于产品运营市场分析至关重要。它帮助团队理解产品的健康状况,并对未来的发展趋势作出预判。 ### 预测 MAU / DAU 的方法 1. **时间序列分析** - 这是一种基于历史数据的趋势外推法,适用于当您的DAU/MAU呈现明显的时间规律性变化时使用。 - 常见工具技术包括ARIMA模型、指数平滑等统计学手段。 2. **机器学习算法** - 对于更复杂的模式识别任务,则可以考虑应用监督式或非监督式的机器学习技术来进行建模训练。例如回归树、随机森林支持向量机都是不错的选择;而深度神经网络在处理大规模复杂特征空间的问题上也有着优异的表现。 3. **分解因素影响** - 分析并量化各个可能的影响因子(如季节效应、节假日特殊事件等因素),通过加权组合的方式构造出最终的增长曲线方程。这一过程通常需要结合业务逻辑深入探讨每个变量之间的内在联系及作用机制。 4. **外部环境监测** - 跟踪行业动态以及宏观经济指标的变化情况对长期走势做出合理估计也十分必要。有时候突发性的政策调整或是竞争对手的新动作都会给现有的增长态势带来较大冲击,在构建预测体系之初就应该把这些不确定要素纳入考量范围之内。 5. **A/B测试** - 如果有条件的话还可以利用A/B实验获取关于特定功能改进效果的第一手反馈信息用于校准完善预测框架的设计思路。 6. **专家判断与经验法则** - 经验丰富的从业者往往能够凭借直觉快速捕捉到潜在的风险点所在,并据此给出具有一定参考价值的意见建议作为辅助决策依据之一。 为了获得最准确的结果,实际操作过程中通常是将以上几种策略相互配合起来综合运用: - 先采用简单的线性拟合或其他基本假设去初步刻画整体变动轮廓; - 再引入更多的细分维度做交叉验证确保结论可靠性; - 最后辅之以定性层面的专业见解进一步优化参数设定直至满意为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值