线代-通过线性变换操纵空间【理论】

本文介绍了线性变换的概念,强调其保持网格线平行和等距的特性,并通过矩阵乘法来理解空间坐标在变换后的定位。以旋转和轴向伸缩为例,详细阐述了如何计算变换后的坐标。同时探讨了非满秩矩阵导致的降维现象以及矩阵翻转在坐标系转换中的意义。此外,还提到了复合变换与矩阵连乘的关系。
摘要由CSDN通过智能技术生成

1 什么是线性变换

输入一个向量,输出另外一个向量,且符合以下要求

  • 线变完还是线,不能弯曲(包括对角线)」保持网格线平行且等距
  • 原点位置不变

为何叫作变换而不是函数:因为可以将其看成一种运动
这里讲的是线性变换,实际有很多变换,复杂有趣,例如傅里叶变换,拉普拉斯变化

*思考:变换的意义何在呢?*拉普拉斯变换等可以将乘法变成加法,线性变换是用来看运动?

2 矩阵乘法如何理解

想想这样一件事情,如果我知道该空间下的某个坐标,我想知道经过变换之后,它落在另一个空间的何处,应该怎么来做呢?矩阵乘法实现了这样的事情。
具体怎么做呢,我们通过下面这个例子来看

假设将原先空间中的点(也可以看成从原点出发的向量)都逆时针旋转 α \alpha α度,且 x x x轴伸缩 b b b倍, y y y轴伸缩 a a a倍,原先空间中的点 ( x , y ) (x,y) (x,y),旋转之后坐标变成 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),请问怎么计算 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)呢?
在这里插入图片描述
在3b1b的视频中,给出了解决该问题的方法,就是利用基底,但是没有推导为何基地就可以,我们在这里进行一下简单的推导。
设原先的基底为 i ( 1 , 0 ) , j ( 0 , 1 ) i(1,0),j(0,1) i(1,0),j(0,1),这个基底经过变换之后为 i 1 ( b ∗ c o s α , b ∗ s i n α ) , j 1 ( − a ∗ s i n α , a ∗ c o s α ) i_1(b*cosα,b*sinα),j_1(-a*sinα,a*cosα) i1(bcosα,bsinα),j1(asinα,acosα),
x 1 x_1 x1的坐标是变换之后的 x ∗ i 1 + y ∗ j 1 x*i_1+y*j_1 xi1+yj1 x x x轴的投影, y 1 y_1 y1的坐标是变换之后的 x ∗ i 1 + y ∗ j 1 x*i_1+y*j_1 xi1+yj1 y y y轴的投影

x 1 = x ∗ i 1 x + y ∗ j 1 x = x ∗ b ∗ c o s α + y ∗ − a ∗ s i n α x_1 = x*i_1x+y*j_1x= x*b*cosα+y*-a*sinα x1=xi1x+yj1x=xbcosα+yasinα
y 1 = x ∗ i 1 y + y ∗ j 1 y = x ∗ b ∗ s i n α + y ∗ a ∗ c o s α y_1 = x*i_1y+y*j_1y= x*b*sinα+y*a*cosα y1=xi1y+yj1y=xbsinα+yacosα

写成矩阵的形式

在这里插入图片描述
例如:长度不变,逆时针旋转90度,则对应的变换矩阵为
在这里插入图片描述
总结:所以以后空间的变换,我们只要思考变换后基底落在何处,将基底依次按列写成矩阵,就可以直接得到我们需要的变换矩阵了

3.复合变换与矩阵连乘

我们将每次矩阵的左乘看成一个变换,那么要依次进行多次变换就依次左乘,但是我们可以先将这些变换的最终结果先算出来,作为一个总的变换矩阵。

4. 奇思妙想

  • 关于非满秩矩阵的理解:因为矩阵非满秩,说明其中的向量存在线性相关,也就是面可能变成了线之类的不好的事情发生,算还是能算,只是相当于降维了,原空间多个点可能映射到一个点
  • 关于矩阵翻转的想法:例如二维空间下的左手坐标系,变成了右手坐标系,如果放在二维空间,很难想明白,所以,我们增加一个z轴,那就可以自然而然地将这个看成z轴绕着y轴旋转了180度,这个是不是就是齐次坐标的意义??
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值