行人识别对于移动机器人来说是必要的,机器人在移动过程中需要实时感知行人的变化,以便进行避障等操作,行人识别的方法通常有深度学习和传统点云处理方法,本文主要讨论基于传统点云处理方法。
点云数据的获取主要依靠tof激光雷达,由于是基于2d栅格地图导航,所以最终要得到的结果是行人在栅格地图上的障碍物,首先将获取到的点云进行滤波处理,滤除噪点和异常点并进行体素滤波,之后将滤波后的3d点云投影到2d平面上, 取其xy坐标,这样点云投影到2d平面会得到一簇簇点集,对点集进行聚类处理可以基于曼哈顿距离或欧式距离,将点集聚类后可以计算聚类点集的质心用于区分两个点集,接下来计算点云的外接矩形,所有得到的外接矩形即是可能的行人区域,将行人矩形区域标记到栅格地图中或者保存到障碍物地图更新,可以用于导航。计算出行人的可能位置后还要涉及行人跟踪,将上一次识别到的行人记录到键值对,下一次计算的行人矩形区域与上一次的进行匹配可以用曼哈顿距离计算相似性,得分高的作为行人的运动轨迹点标记障碍物地图用于导航避障。
以上就是基于tof雷达的点云行人识别标记2d障碍物地图用于导航避障的实现原理,与基于3d雷达的深度学习点云语义分割方法不同,基于传统的点云处理方法特别适合2d导航避障,不需要加载和训练深度学习模型,只需几个简单步骤即可识别行人,所需算力小运算速度快。