LLM评测范式与方法

    为了有效地评估大语言模型的性能,一种主流的途径就是选择不同的能力维度并且构建对应的评测任务,进而使用这些能力维度的评测任务对模型的性能进行测试与对比。可供选择的能力维度包括但不限于本书所介绍的基础能力和高级能力。根据评测方式的不同,针对上述能力维度的评估方法可以分为三种方式:基于评测基准的方法、基于人类评估的方法和基于模型评估的方法。为了更为准确、系统地介绍大模型的评测方法,本节进一步根据研发方式将大语言模型划分为两种主要类型:第一类是基础大语言模型,这类模型仅经过预训练,未经任何特定任务的适配;第二类是微调大语言模型,这类模型在预训练的基础上,针对特定指令或对齐需求进行了微调。下表列举了不同评测方法的典型工作。在接下来的章节中,将分别探讨两类大语言模型的具体评测方法及其在实践中的应用。

在这里插入图片描述
评测方法及其典型评测工作

基础大语言模型的评测

    基础大语言模型,即经过预训练获得的模型。它们通常具备丰富的世界知识与通用的语言能力,是后续研发各类大语言模型及其应用的基础。在评测这类模型时,主要关注其基础能力,典型的能力包括复杂推理、知识利用等。由于这些基础能力可以通过明确定义的任务来进行有效评测,因此基于

### 评估大型模型在代码生成方面的能力 为了全面评估大型语言模型LLMs)在代码生成方面的性能,可以采用多种基准测试工具和方法。HumanEval-X是一个专门设计来评价编程语言中超越Python问题的基准集[^1]。此基准不仅限于Python,还包括其他流行的编程语言,使得能够跨多个环境检验模型的表现。 对于具体的评估过程: - **多语言支持**:通过使用像HumanEval-X这样的平台,可以直接对比不同LLM在同一组编码挑战上的表现,这些挑战覆盖了不同的编程范式和技术栈。 - **实际任务解决能力**:NaturalCodeBench (NCB)提供了衡量模型解决真实世界编程任务的有效手段。这有助于了解模型能否应对复杂的业务逻辑或算法实现需求。 下面展示了一个简单的例子,说明如何利用Python编写函数并由LLM自动生成相应的单元测试用例: ```python def add(a, b): """返回两个数相加的结果""" return a + b # 自动生成的单元测试案例 import unittest class TestAddFunction(unittest.TestCase): def test_add_positive_numbers(self): self.assertEqual(add(1, 2), 3) def test_add_negative_and_positive_number(self): self.assertEqual(add(-1, 1), 0) if __name__ == '__main__': unittest.main() ``` 这段代码首先定义了一个基本的`add()`函数,接着模拟了一种场景下自动化工具会为这个函数创建的一系列测试情况。这种类型的评测可以帮助识别模型是否能理解给定的功能描述,并据此构建有效的验证程序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月七꧁ ꧂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值