个人感觉NVIDIA官网给出的Jetson相关资料比较乱,为此本文从硬件和软件两方面进行介绍和相关文档的整理,希望可以帮助到大家。
1.硬件
NVIDIA Tegra是一个集成了ARM架构中央处理器(CPU)和图形化处理单元(GPU)的处理器芯片。
NVIDIA Jetson 是专为机器人和嵌入式边缘AI应用所打造的平台,指的是一系列的嵌入式计算平台,包括JetsonOrin Nano系列、Jetson Orin NX系列、Jetson AGX Orin系列、Jetson TX2系列等。
2.软件
L4T——Linux for Tegra的缩写,是一个专门为NVIDIA的Tegra系列嵌入式系统设计的Linux发行版,即Jetson Linux,包括Linux内核、UEFI引导加载程序、NVIDIA驱动程序、基于Ubuntu的示例文件系统等。
JetPack SDK包括三个组件:Jetson Linux、Jetson AI堆栈、Jetson平台服务。
例如JetPack 6.1 包括 NVIDIA Jetson Linux 36.4,其中包括 Linux 内核 5.15、基于UEFI的引导加载程序、基于Ubuntu22.04的根文件系统、NVIDIA驱动程序、必要的固件、工具链等。与此版本一起打包的 Jetson AI 堆栈集成了 CUDA 12.6、TensorRT 10.3、cuDNN 9.3、VPI 3.2、DLA 3.1和DLFW 24.0。
NVIDIA JetPack SDK Documentation — JetPack 6.1 documentationhttps://docs.nvidia.com/jetson/jetpack/index.html
所以在安装了JetPck之后,开发板中就有了CUDA、cuDNN、TensorRT等工具,一般无需重新下载安装。这些工具之间有严格的版本对应关系,相关介绍和对应关系可在下面链接中查找。
CUDA工具包为创建高性能GPU加速提供了开发环境,包括GPU加速库、调试和优化工具、C/C++ 编译器以及用于部署应用程序的运行时库。
CUDA Toolkit Documentation 12.6 Update 3https://docs.nvidia.com/cuda/index.html
cuDNN是一个用于神经网络GPU加速的基础库,为标准例程(如前向和后向卷积、池化、归一化等)提供高度优化的实现。
Support Matrix — NVIDIA cuDNNhttps://docs.nvidia.com/deeplearning/cudnn/latest/reference/support-matrix.html
TensorRT是一个用于加速神经网络GPU推理的框架。NVIDIA Deep Learning TensorRT Documentationhttps://docs.nvidia.com/deeplearning/tensorrt/index.html
3.安装配置JetPack SDK
1.SD卡镜像 ——Jetson Orin Nano开发者套件
2.SDK Manager——适用于任何Jetson Orin开发者套件
*运行 NVIDIA SDK Manager 需要运行 Ubuntu Linux x64 版本 22.04 或 20.04 的 Linux 主机*
NVIDIA SDK Manager Documentation — SDK Manager 2.1.0 documentationhttps://docs.nvidia.com/sdk-manager/index.html