AI新星UniVAD:用少样本在跨领域检测中大显身手

人工智能咨询培训老师叶梓 转载标明出处

在视觉异常检测(Visual Anomaly Detection, VAD)领域,识别图像中偏离正常模式的异常样本是一项关键任务,广泛应用于工业、逻辑和医学等多个领域。然而,由于不同领域之间的数据分布和异常类型存在显著差异,现有的VAD方法通常针对特定领域进行优化,采用定制的检测算法和模型架构,难以跨领域泛化。此外,即使在同一领域内,大多数VAD方法也遵循“一类一模型”的范式,需要大量正常样本进行训练,导致模型的泛化能力较差,阻碍了异常检测研究的标准化和可扩展性。

为了解决这些问题,中国科学院自动化研究所、中国科学院大学和Objecteye Inc.的研究人员提出了一种名为UniVAD的新型少样本视觉异常检测方法。UniVAD通过一个无需训练的统一模型,能够在多个领域(包括工业、逻辑和医学)中检测异常,而无需在特定领域数据上进行训练。该方法仅需在测试阶段提供少量正常样本作为参考,即可检测之前未见过的对象中的异常,显著提高了异常检测模型的泛化能力和迁移能力。图 1 展示了现有 VAD 方法和 UniVAD 在不同领域(工业、逻辑、医疗)的多个数据集上的 1-shot 性能。UniVAD 在多个数据集和领域中均取得了最先进的结果,优于每个领域的专门方法。

图 2 对比了 UniVAD 和现有 VAD 方法。现有 VAD 方法是为每个领域专门设计的,而 UniVAD 可以使用统一模型在多个领域执行异常检测任务。 

想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。

1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。

CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987

2025年1月18日20:00-21:30(一个半小时)叶梓老师带你从零开始,动手操作,快速上手Dify,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值