PCL点云处理之快速点特征直方图(FPFH)描述符(八十六)
前言
对于具有 n 个点的给定点云 P,点特征直方图(见点特征直方图(PFH)描述符)的理论计算复杂度为 O (nk ^ 2) ,其中 k 是 P 中每个点 p 的邻居数。对于实时或接近实时的应用程序,密集点邻居中的点特征直方图的计算是主要瓶颈之一。这里描述了 PFH 公式的简化,称为快速点特征直方图(FPFH),它将算法的计算复杂度降低到 O (nk) ,同时仍然保留了 PFH 的大部分判别能力。

一、快速点特征直方图理论
为了简化直方图特征计算,我们按以下步骤进行:
-
在第一步中,对于每个查询点 p _ q,按照点特征直方图(PFH)描述符中的描述计算一组元组 alpha、 phi、 theta 及其相邻元组之间的元组 θ ——这将被称为简化点特征直方图(SPFH) ;
-
在第二步中,对每个点重新确定其 k 邻居,并使用相邻的 SPFH 值对 p _ q (称为 FPFH)的最终直方图进行加权,如下所示:

-
其中,加权 ω _ i 表示查询点 p _ q 与某个给定度量空间中的邻近点 p _ i 之

本文介绍了PCL库中的快速点特征直方图(FPFH)描述符,它是点特征直方图(PFH)的一种简化形式,用于3D点云的特征提取和匹配。FPFH通过减少计算复杂度达到O(nk)来提高实时应用的性能。文章对比了FPFH与PFH的区别,并提供了FPFH在PCL库中的实现细节,包括代码示例和OpenMP加速策略。
订阅专栏 解锁全文
2849

被折叠的 条评论
为什么被折叠?



