交并比(Intersection over Union)

交并比(IoU)是衡量深度学习目标检测模型精度的重要指标,它基于真阳性(TP)、假阳性(FP)和假阴性(FN)的计算。IoU是TP与(TP+FP+FN)的比值,而Mean IoU是所有类别IoU的平均值,用于评估多类别检测的性能。这两个指标对于优化和比较不同模型的性能至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

交并比(Intersection over Union)

在这里插入图片描述

T P TP TP:被判定为正样本,事实上也是正样本 ,即蓝色与橙色的交集

T N TN TN:被判定为负样本,事实上也是负样本,即蓝色与橙色并集以外的区域

F P FP FP:被判定为正样本,但事实上是负样本,即橙色中除了交集部分

F N FN FN:被判定为负样本,但事实上是正样本,即蓝色中除了交集部分

交并比(IoU):
I o U = T P T P + F P + F N IoU=\frac{T P}{T P+F P+F N} IoU=TP+FP+FNTP

在这里插入图片描述

设第 i i i个类别的交并比为 I o U i IoU_i IoUi,均交并比(Mean Intersection over Union,MIoU)为所有类别交并比 I o U i IoU_i IoUi的均值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二进制人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值