本文的目的在于快速复习线性变换的几何理解,讲解请看
https://www.bilibili.com/video/BV1ys411472E?p=4https://www.bilibili.com/video/BV1ys411472E?p=4
线性变换(linear transformation)
transformation意味着function,更广泛来说是mapping(映射)。将一个向量变换到另一个向量,即输入一个向量到输出一个向量,中间所用的“中介”就是某一种mapping。transformation告诉我们应该用运动的思想来理解映射的过程。那么transformation到底是什么在变换,直观上来讲可能是向量本身在运动,还有另一种理解方式——坐标系在变换。
linear线性意味着2个条件:(1)变换前后原点不变(2)变换后依然是线性的
linear据意味着坐标系的网格线变换后保持平行且等距分布。
那么“中介”这个黑箱是什么?答案是矩阵
【注】下次看见矩阵,要考虑它到底是普通的矩阵还是线性变换
那么为什么是矩阵?
首先我们要知道,笛卡尔坐标系中的直角坐标系可以由(1,0)和(0,1)这两个向量张成
【注】事实上,任意一组线性无关的向量组成的线性无关向量集(set)可以张成一个空间;只不过(1,0)与(0,1)组成的线性无关向量集可以张成二维空间
其实这两个向量就是这个空间的基向量,可以表示任意向量。
其次,我们可以从变换前后的基向量入手,就可以明晰这个路径。
举个例子:转变成
,原空间任意向量
变成
原因很简单
变换后
【补充】谈到一个向量时把它想成一个箭头,多个向量想成点(因为起点都在原点,想终点即可)