线性变换的几何解释(图请参考b站3Blue1Brown)

本文回顾线性变换的几何概念,通过矩阵解析向量运动和坐标系变换,重点讲解了基向量如何通过矩阵表示并演示了实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文的目的在于快速复习线性变换的几何理解,讲解请看

https://www.bilibili.com/video/BV1ys411472E?p=4https://www.bilibili.com/video/BV1ys411472E?p=4

线性变换(linear transformation)

transformation意味着function,更广泛来说是mapping(映射)。将一个向量变换到另一个向量,即输入一个向量到输出一个向量,中间所用的“中介”就是某一种mapping。transformation告诉我们应该用运动的思想来理解映射的过程。那么transformation到底是什么在变换,直观上来讲可能是向量本身在运动,还有另一种理解方式——坐标系在变换

linear线性意味着2个条件:(1)变换前后原点不变(2)变换后依然是线性的

linear据意味着坐标系的网格线变换后保持平行且等距分布

那么“中介”这个黑箱是什么?答案是矩阵

【注】下次看见矩阵,要考虑它到底是普通的矩阵还是线性变换

那么为什么是矩阵?

首先我们要知道,笛卡尔坐标系中的直角坐标系可以由(1,0)和(0,1)这两个向量张成

【注】事实上,任意一组线性无关的向量组成的线性无关向量集(set)可以张成一个空间;只不过(1,0)与(0,1)组成的线性无关向量集可以张成二维空间

其实这两个向量就是这个空间的基向量,可以表示任意向量。

其次,我们可以从变换前后的基向量入手,就可以明晰这个路径。

举个例子:span(\begin{bmatrix} 1\\0 \end{bmatrix},\begin{bmatrix} 0\\1 \end{bmatrix})转变成span(\begin{bmatrix} a\\b \end{bmatrix},\begin{bmatrix} c\\d \end{bmatrix}),原空间任意向量\begin{bmatrix} k\\m \end{bmatrix}变成\begin{bmatrix} a & c \\b & d \end{bmatrix}\begin{bmatrix} k\\m \end{bmatrix}

原因很简单\begin{bmatrix} k\\m \end{bmatrix}=k\begin{bmatrix} 1\\0 \end{bmatrix}+m\begin{bmatrix} 0\\1 \end{bmatrix}

变换后k\begin{bmatrix} a\\b \end{bmatrix}+m\begin{bmatrix} c\\d \end{bmatrix}=\begin{bmatrix} k*a+m*c\\ k*b+m*d \end{bmatrix}=\begin{bmatrix} a &c \\ b& d \end{bmatrix}\begin{bmatrix} k\\m \end{bmatrix}

【补充】谈到一个向量时把它想成一个箭头,多个向量想成点(因为起点都在原点,想终点即可)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值