【笔记】概统论与数理统计第八章知识点总结

参数估计:利用样本提供的信息, 对分布函数中的未知参数θ有一个基本的估计

8.1 点估计

  • 估计值和估计量:设总体的分布函数是 F(x, θ),其中θ为未知参数。从总体X中抽取样本X_1, X_2,...,X_n, 其观测值为x_1, x_2,...,x_n 构造某个统计量𝜃(X_1, X_2,...,X_n),并用它的观测值𝜃(x_1, x_2,...,x_n)来估计未知参数 θ,则称 𝜃(x_1, x_2,...,x_n)为 θ 的估计值,称𝜃(X_1, X_2,...,X_n)为 θ 的估计量
  • θ 的一个点估计:用样本的统计量给出未知参数的一个估计值的方法
    • 点估计量:是一个统计量, 是一个不含未知参数的, 作为样本的函数的随机变量
    • 点估计值:一个数
    • 点估计量和点估计值都可简记为\hat{\theta}
  • 未知参数向量的点估计:如果 θ = (\theta_1, \theta_2,...,\theta_k) 是k维未知参数向量,则需要构造k 个统计量\theta_i = \theta_i(X_1, X_2,...,X_n), i = 1, 2, . . . , k作为\theta_1, \theta_2,...,\theta_k的点估计量
    • 理论上, 任何一个统计量都可以作为未知参数 θ 的一个估计量,但是否合理要以一定的概率统计理论和意义作为基础。下面介绍两个常用的求估计量的方法: 矩估计法和极大似然估计法

  • 矩估计法:设总体 X 有分布函数 F(x, θ), 其中 θ 为一维未知参数,若m= m(θ) = E(X) 存在,由此反解出 θ = g(m),再用样本均值 X 代替 m,就得到了 θ 的一个估计量 \hat{\theta} = g(X)
    • 概率基础:独立同分布的大数定律
    • 如果有多个未知参数, 我们没有办法仅仅用总体的一阶矩表示未知参数 (\theta_1, \theta_2,...,\theta_k), 通常我们可以用前 k 阶总体矩表示未知参数向量, 然后用对应的样本矩代替总体矩, 即可得未知参数向量的矩估计

  • 极大似然估计法
    • 似然函数:如果我们把X_1, X_2,...,X_n看成是样本,似然函数L(θ) 是对应于参数 θ 的概率模型中样本取到观测值的概率
      • 选择使得 L(θ) 最大的θ对应的概率模型

    • 极大似然估计法:根据样本观测值构造似然函数, 然后最大化似然函数, 进而进行参数点估计的方法

      • 似然函数𝐋(𝛉):对于给定的观测值x_1, x_2,...,x_n,它是未知参数 θ 的函数。

      • 极大估计值与极大估计量:设总体 X 仅含一个未知参数 θ,并且总体的分布律或密度函数已知,x_1, x_2,...,x_n为一组样本的观测值. 若存在 θ 的一个值 𝜽 = 𝜽(x_1, x_2,...,x_n),使得L(𝜽) = max{L(θ)},则称 𝜽是 θ 的极大似然估计值。而统计量 𝜽(X_1, X_2,...,X_n)称为 θ 的极大似然估计量

        • L(θ) 的最大值点对应的 θ 值\hat{\theta}, 作为未知参数的极大似然估计。其中,最大值点一般是驻点,满足方程

        • 由于 ln L(θ) 和 L(θ) 在同一处取到最大值, 因而极大似然估计值也可由对数似然方程\frac{dL(\hat{\theta})}{d\theta(\hat{\theta})}=0解得

      • 总体 X 的分布中含有多个未知参数:θ = (\theta_1, \theta_2,...,\theta_k) 时, 似然函数为 L(θ) = L(\theta_1, \theta_2,...,\theta_k),此时对数似然方程变为对数似然方程组

      • 当似然方程或对数似然方程无解时, 应从定义考虑求极大似然估计, 即选择𝜃, 使得 L(\hat{\theta}) = max{L(θ)}。多半情况下, 对应于最大值在边界取到的情况

 

8.2 估计量的评选标准

  • 无偏性标准
    • 无偏估计量:若未知参数 θ 的估计量𝜃(X_1, X_2,...,X_n)有E(\hat{\theta})=θ,则称\hat{\theta}是参数 θ 的无偏估计量,反之称为有偏估计量
    • 渐近无偏估计量:𝑏 (\hat{\theta})=𝐸 (\hat{\theta})−𝜃 为 θ 的偏差,若样本容量 n → ∞ 时, 有 b(\hat{\theta})→ 0, 则称\hat{\theta}为 θ 的渐近无偏估计量
  • 有效性标准:取值在 θ 附近越集中越好
    • 定义:设\theta_1 =\theta_1(X_1, X_2,...,X_n)和\theta_2\theta_2(X_1, X_2,...,X_n)是θ的两个无偏估计量。若D (\theta_1)≤D (\theta_2),则称 \theta_1\theta_2更有效
  • 一致性标准:样本估计量 \hat{\theta}\hat{\theta}(X_1, X_2,...,X_n)与样本容量n有关,要求当n越来越大的时候, \hat{\theta}会逼近 θ
    • 定义:设 \hat{\theta}是θ的估计量,若\hat{\theta}\overset{P}{\rightarrow} θ(n → ∞),则称\hat{\theta}是θ的一致估计量
    • 当总体X的前k阶原点矩m_k存在时
      • 样本 k 阶原点矩 A_k 是m_k的一致估计量
      • 样本均值是总体均值的一致估计量.
      • 样本 k 阶中心距是总体 k 阶中心距的一致估计量
    • 当样本方差S^2的方差𝐃(S^2) → 0时,样本方差S^2是总体方差 \sigma^2 的一致估计量
  • 均方误差标准:估计量更紧密地围绕在θ附近(方差小且均值离θ更小)更好
    • 定义:对于总体 X 的未知参数 θ,\hat{\theta}是 θ 的估计量,称M(\hat{\theta}) = E(\hat{\theta}-\theta)^2,为\hat{\theta}关于 θ 的均方误差
      • ​​​​​​​若两个估计量𝜃1和𝜃2有M( \hat{\theta_1}) \leq M(\hat{\theta_2}),则称𝜃1在均方误差下比𝜃2 更有效
    • 定理\hat{\theta} - 𝜃 的二阶矩 = 方差 + 一阶矩的平方

      • 对于无偏估计量,E(\hat{\theta}) = θ ⇒ M(\hat{\theta}) = D(\hat{\theta})

8.3 区间估计

  • 区间估计的思想:找出一个由样本决定的区间, 使得未知参数落在这个区间上的概率是可以计算的。这样我们就能在一定可靠度 (参数落在此区间的概率) 下得出估计值的最大可能误差
  • 置信区间
    • ​​​​​​​​​​​定义:设总体的分布函数 F(x, θ) 含有未知参数 θ,X_1, X_2,...,X_n是来自总体 X 的一个样本, \theta_1 = \theta_1(X_1, X_2,...,X_n) 和 \theta_2= \theta_2(X_1, X_2,...,X_n) 是两个统计量。若对给定的概率1 − α(0 < α < 1), 有

      • ​​​​​​​\hat{\theta}_1\hat{\theta}_2:置信下限和置信上限
      • 1 − α :置信度
      • 则称随机区间 (\hat{\theta}_1\hat{\theta}_2) 为参数 θ 的置信度为 1 − α 的置信区间

    • 区间估计的基本步骤

      • ​​​​​​​​​​​确定估计参数、α,找到估计量δ,\bar{x},n,s等

      • 列出置信区间对应公式,查找分位点
      • 带入估计量计算置信上下限
  • 一个正态总体下参数的置信区间:假设X_1, X_2,...,X_n是来自总体 X ∼ N(µ, σ2) 的样本
    • 方差已知, 求均值的置信区间

    • 方差未知, 求均值的置信区间

    • 均值未知, 求方差的置信区间

      • ​​​​​​​​​​​​​​标准差的置信区间为

    • 非正态总体/总体分布未知,但n≥30,使用U置信区间即可,其中可以用S替代δ

    • 若 η = g(θ) 是 θ 的单调函数,从置信区间的定义,则由 θ 的置信区间 ( \hat{\theta}_1\hat{\theta}_2)),可得 η 的置信区间 (\hat{\mu}_1, \hat{\mu}_2)。​​​​​​​

      • 若 g 单调上升,则 η 的置信区间为 (g(\hat{\theta}_1), g(\hat{\theta}_2))
      • 若 g 单调下降,则 η的置信区间为 (g(\hat{\theta}_2), g(\hat{\theta}_1))
  • 两个正态总体下参数的置信区间
    • ​​​​​​​​​​​​​​\sigma_1^2,\sigma_2^2 已知求总体均值差 µ1 − µ2 的置信区间

    • \sigma_1^2=\sigma_2^2\sigma^2 未知,求总体均值差 µ1 − µ2 的置信区间

    • 所有参数未知,求总体方差比\frac{\sigma_1^2}{\sigma_2^2}的置信区间

  • 单侧置信限
    • ​​​​​​​​​​​​​​设总体 X 的分布函数 F(x, θ) 中含有未知参数 θ,X_1, X_2,...,X_n是来自总体 X 的一个样本
    • 单侧置信下限:存在统计量\hat{\theta}_1(X_1, X_2,...,X_n),使得P(θ > \hat{\theta}_1) = 1 − α
    • 单侧置信上限:存在统计量\hat{\theta}_2(X_1, X_2,...,X_n),使得P(θ < \hat{\theta}_2) = 1 − α

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值