Transformer+目标检测,这一篇入门就够了

在这里插入图片描述

本文作者:

BIT可达鸭

禁止转载

Encoder-Decoder 简介:

机器翻译是序列转换模型的一个核心问题,其输入和输出都是长度可变的序列。为了处理这种类型的输入和输出,我们可以设计一个包含两个主要组件的结构。第一个组件是一个 编码器(encoder):它接受一个长度可变的序列作为输入,并将其转换为具有固定形状的编码状态。第二个组件是 解码器(decoder):它将固定形状的编码状态映射到长度可变的序列。这被称为 编码器-解码器(encoder-decoder)结构:

同样我们可以将Encoder-Decoder结构类比到视觉算法中,例如FCN、UNet等语义分割模型中encoder对应卷积操作,而decoder则对应上采样操作:

  • 0
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
以下是使用Swin Transformer、FPN和PAN进行目标检测的代码示例: 首先,我们需要安装必要的库和工具: ```bash pip install torch torchvision opencv-python tqdm ``` 接下来,我们需要下载COCO数据集和预训练的Swin Transformer模型。我们可以使用以下命令来下载它们: ```bash mkdir data cd data # Download COCO dataset wget http://images.cocodataset.org/zips/train2017.zip wget http://images.cocodataset.org/zips/val2017.zip wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip unzip train2017.zip unzip val2017.zip unzip annotations_trainval2017.zip rm train2017.zip val2017.zip annotations_trainval2017.zip # Download pre-trained Swin Transformer model mkdir models cd models wget https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth ``` 接下来,我们可以编写一个Python脚本来训练我们的模型。以下是一个简单的示例: ```python import torch import torchvision import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision.datasets import CocoDetection from swin_transformer import SwinTransformer from fpn import FPN from pan import PAN # Define hyperparameters batch_size = 16 num_epochs = 10 lr = 1e-4 # Define data transforms transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # Load COCO dataset train_dataset = CocoDetection(root='./data', annFile='./data/annotations/instances_train2017.json', transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # Define Swin Transformer model swin = SwinTransformer() swin.load_state_dict(torch.load('./data/models/swin_tiny_patch4_window7_224.pth')) # Define FPN and PAN models fpn = FPN(in_channels=[96, 192, 384, 768], out_channels=256) pan = PAN(in_channels=[256, 256, 256, 256], out_channels=256) # Define detection head detection_head = nn.Sequential( nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 4, kernel_size=1), nn.Sigmoid() ) # Define optimizer and loss function optimizer = optim.Adam(list(swin.parameters()) + list(fpn.parameters()) + list(pan.parameters()) + list(detection_head.parameters()), lr=lr) criterion = nn.MSELoss() # Train the model for epoch in range(num_epochs): for images, targets in train_loader: # Forward pass features = swin(images) fpn_features = fpn(features) pan_features = pan(fpn_features) output = detection_head(pan_features[-1]) # Compute loss loss = criterion(output, targets) # Backward pass and update weights optimizer.zero_grad() loss.backward() optimizer.step() # Print statistics print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) ``` 在上面的代码中,我们首先加载了预训练的Swin Transformer模型,并使用它提取特征。然后,我们将这些特征输入到FPN和PAN模型中,以生成具有不同分辨率的特征图。最后,我们使用一个简单的检测头来预测边界框。 在训练期间,我们使用均方误差(MSE)作为损失函数,并使用Adam优化器来更新模型的权重。 请注意,上面的代码仅提供了一个简单的示例,实际上,您可能需要进行一些其他的调整和修改,以便使其适用于您的具体任务和数据集。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值