深度学习遇到梯度无法反传?看这些方法就够了!

10 篇文章 1 订阅

方法对比

  1. Straight-Through Estimator (STE)

    • 核心思想:在前向传播中应用硬离散决策,在反向传播时忽略离散化,直接传递梯度。
    • 优点:简单易实现;适用范围广。
    • 缺点:梯度传递可能不准确。
  2. Gumbel-Softmax

    • 核心思想:通过引入Gumbel分布和softmax函数,实现对离散选择的可微分近似。
    • 优点:可微分;能够通过温度参数平滑控制离散度。
    • 缺点:需要合适的温度参数调整。
  3. Reinforce

    • 核心思想:利用强化学习原理,根据策略产生的奖励来调整模型参数。
    • 优点:通用性强,适用于任何离散决策问题。
    • 缺点:梯度估计方差大,可能导致训练不稳定。
  4. Concrete / Relaxed Softmax

    • 核心思想:Gumbel-Softmax的变体,通过温度参数控制输出的离散度。
    • 优点:平滑可控的近似离散变量。
    • 缺点:同样需要细致的温度参数调整。
  5. Continuous Relaxations

    • 核心思想:通过引入连续变量的松弛形式来近似原离散问题。
    • 优点:使问题可微分,便于应用梯度下降。
    • 缺点:可能仅是原问题的近似,引入误差。
  6. Temperature Annealing

    • 核心思想:逐渐降低温度参数,使模型从软决策过渡到硬决策。
    • 优点:结合了探索和利用,平衡了训练的初期和后期。
    • 缺点:需要精心设计退火策略。
  7. Differentiable ArgMax

    • 核心思想:寻找ArgMax操作的可微分近似。
    • 优点:处理ArgMax等常见离散操作的方法。
    • 缺点:近似效果依赖于输入的特性。

区别和联系

  • 核心区别:这些方法主要在于处理离散变量的策略上的不同——有的通过忽略离散化(如STE),有的通过近似离散选择(如Gumbel-Softmax、Concrete / Relaxed Softmax),有的利用梯度估计(如Reinforce),而有的通过连续松弛(如Continuous Relaxations)。
  • 应用场景:选择哪种方法通常取决于具体问题、模型的复杂性、以及对训练稳定性和精确度的要求。
  • 联系:尽管这些方法在实现细节和应用策略上有所不同,但它们共同的目的是使得在包含离散变量决策的深度学习模型中能够有效地利用梯度下降进行训练。
  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SoaringPigeon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值