点云特征描述子概述、PFH描述子提取

文章介绍了点云处理中的六种特征描述子,包括NARF、PFH、FPFH、RoPs、VFH和GASD,以及基于惯性矩和偏心率的描述子。其中详细展示了如何使用PCL库提取PFH特征,涉及法线估计和K近邻搜索。这些描述子广泛应用于点云的目标检测、场景识别、配准和分类任务。

1、 6种点云特征描述子简概

NARF(Normal Aligned Radial Feature)特征点描述子:NARF描述子是一种基于法线对齐的径向特征描述子。它通过将点云表面分割为小的网格单元,并计算每个单元中的法线直方图,从而提取特征。NARF描述子对于点云的曲率形状变化比较敏感,可用于目标检测和场景识别等任务。

PFH(Point Feature Histogram)和 FPFH(Fast Point Feature Histogram)点特征直方图描述子:PFH和FPFH是一类常用的点云特征描述子。它们通过计算点与其邻域内其他点之间的相对位置和法线之间的关系构建直方图描述子。PFH描述子计算相对复杂,而FPFH是对PFH进行了优化,提高了计算效率。这些描述子通常用于点云配准、识别和匹配等任务。

RoPs(Rotational Projection Statistics)特征:RoPs特征是一种基于旋转投影统计的描述子。它将点云投影到多个不同的视点上,并统计每个视点上的投影信息,如高度、密度和曲率等。RoPs特征对点云的旋转和尺度变化具有较好的不变性,可用于目标分类和识别等任务。

VFH(Viewpoint Feature Histogram)视点特征直方图描述子:VFH描述子是一种基于视点的特征描述子。它计算点云中每个点与其他点之间的相对位置和法线之间的关系,并构建直方图描述子。VFH描述子主要用于点云的识别和分类任务,对

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值