💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于涡量-流函数公式的二维盖板驱动空腔流求解器研究
一、基本原理与数学表达
-
涡量-流函数法的核心思想
通过将原始变量(速度 u,vu,v 和压力 pp)转换为导出变量 涡量 ωω 和 流函数 ψψ ,消去压力项,简化不可压缩Navier-Stokes方程的求解。该方法尤其适用于二维不可压缩流动,因连续性方程自动满足。 -
数学定义与方程
-
涡量:定义为速度场的旋度,二维下为标量:
-
流函数:与速度场的关系为:
-
由此可得流函数的泊松方程:
∇2ψ=−ω
- 涡量输运方程(由动量方程推导):
其中 Re为雷诺数,体现惯性力与粘性力的相对重要性。
- 边界条件特性
流函数在固壁边界处为常数(通常设为零),而涡量在固壁处需通过速度梯度确定,例如采用泰勒展开或迭代法。
二、二维盖板驱动空腔流的标准问题定义
- 几何与边界条件
- 几何:正方形腔体(边长 L=1L=1),顶部盖板以速度 u=1u=1 水平移动,其余三边静止(无滑移条件)。
- 边界条件:
- 几何:正方形腔体(边长 L=1L=1),顶部盖板以速度 u=1u=1 水平移动,其余三边静止(无滑移条件)。
- 典型流动现象
- 低雷诺数时形成单一主涡;
- 高雷诺数(如 Re>1000)时出现次级涡、三次涡,甚至四元涡结构。
三、数值方法实现
-
离散策略
- 有限差分法:空间导数采用中心差分(二阶精度),时间离散可选显式Euler或隐式Crank-Nicolson格式以提高稳定性。
- 高阶格式:如四阶Hermitian插值用于速度项,四阶中心差分用于对流项,提升精度。
-
边界条件处理
- 流函数:固壁处 ψ=0ψ=0;
- 涡量:利用壁面速度梯度计算,例如通过泰勒展开:
- 求解流程
- 初始化流场(ψ,ω);
- 迭代求解泊松方程 ∇2ψ=−ω;
- 更新涡量方程;
- 检查收敛性(残差<10−10)。
四、适用性分析与局限性
-
优势
- 自动满足连续性方程,无需压力-速度耦合;
- 二维问题中计算效率高,仅需两方程联立。
-
局限性
- 三维扩展困难:因流函数在三维中退化为矢量势,方程复杂度显著增加;
- 涡量边界条件敏感性:壁面涡量计算易引入误差,需高精度离散。
五、研究现状与典型案例
-
高精度算法
- 谱方法:解耦涡量与流函数,通过类泊松方程高效求解,适用于复杂几何。
- 小波方法:结合自适应网格,捕捉高雷诺数下的精细涡结构。
-
典型应用案例
- 高雷诺数腔流:Erturk等人采用601×601网格,计算至Re=21,000,发现新四元涡结构。
- 非均匀网格优化:Mao等人通过变网格技术提升壁面附近分辨率,准确捕捉反转流。
- 圆柱起动涡模拟:改进ADI迭代方法,成功模拟涡旋周期性脱落。
六、结论与展望
涡量-流函数法在二维不可压缩流动中展现出色效率与精度,尤其在盖板驱动腔流等经典问题中成为验证算法的基准。未来研究方向包括:
- 开发三维扩展算法;
- 结合机器学习优化网格与迭代过程;
- 探索更高雷诺数下的湍流模拟。
📚2 运行结果
部分代码:
%%% CREATE VELOCITY FROM STREAM FUNCTION
u(2:Nx-1,Ny) = Wall_Velocity;
u(i,j) = (St(i,jp)-St(i,jm))/(2*h); v(i,j) = (-St(ip,j)+St(im,j))/(2*h);
%%% PLOTS
cm = hsv(ceil(100/0.7)); cm = flipud(cm(1:100,:));
figure(1); contourf(x,y,u',23,'LineColor','none');
title('U-velocity'); xlabel('x-location'); ylabel('y-location')
axis('equal',[0 L 0 L]); colormap(cm); colorbar('westoutside');
figure(2); plot(y,u(round(Ny/2),:));
title('Centerline x-direction velocity');
xlabel('y/L'); ylabel('u/U'); axis('square'); xlim([0 L]); grid on
N = 1000; xstart = max(x)*rand(N,1); ystart = max(y)*rand(N,1);
[X,Y] = meshgrid(x,y);
figure(3); h=streamline(X,Y,u',v',xstart,ystart,[0.1, 200]);
title('Stream Function'); xlabel('x-location'); ylabel('y-location')
axis('equal',[0 L 0 L]); set(h,'color','k')
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]董韶峰,李荫堂,刘艳华.涡量一流函数法模拟不同高宽比和角度的腔内自然对流[J].低温与特气, 2003, 21(6):6.DOI:10.3969/j.issn.1007-7804.2003.06.005.
[2]刘聪尉,吴方良,李环,等.空腔不可压缩流动特征及其声学特性研究[J]. 2014.DOI:10.3969/j.issn1000-4874.2014.02.012.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取