💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于卷积神经网络(CNN)的风电功率预测是另一种利用深度学习技术来进行风力发电功率预测的方法,尤其适合处理时间序列数据中的局部特征和模式识别。尽管CNN最初是为了图像识别任务设计的,但其强大的特征提取能力也使其成为处理序列数据(如风电功率预测)的有效工具。以下是使用CNN进行单变量输入多步风电功率预测的研究概述:
研究背景
如同基于BiLSTM的研究,风电功率预测面临的主要挑战在于风速、风向等自然因素导致的功率输出的高度不确定性。采用CNN进行预测,旨在捕捉风力发电数据中的时空特征,提高预测精度,从而帮助电网更高效地整合可再生能源。
CNN简介
卷积神经网络通过卷积层、池化层和全连接层的组合,能够自动学习输入数据的多层次特征。在风电功率预测中,CNN可以识别出不同时间尺度上的周期性模式和趋势,这对于预测未来风电功率至关重要。
研究方法
-
数据预处理:同样,首先需要对风电功率时间序列数据进行清洗、标准化处理,并可能根据需要进行重采样以统一时间间隔。
-
序列重构:由于CNN传统上用于处理二维图像数据,对于一维的时间序列数据,可以通过构造时序图像(如 spectrogram 或者将时间序列展开为时间延迟特征矩阵)或将序列直接作为一维卷积的输入来适应CNN模型。
-
模型设计:
- 一维卷积层:用于捕捉时间序列中的局部特征和模式。
- 池化层:降低特征维度,减少计算复杂度,同时保持重要信息。
- 循环结构集成(可选):为了更好地捕捉时间序列的长期依赖,可以在CNN中集成循环神经网络(如LSTM)单元,形成CNN-LSTM混合模型。
- 多层感知机(MLP)或全连接层:用于特征的高级抽象和最终的功率预测输出。
-
多步预测策略:可以采用递归预测或多输出结构。递归预测是基于前一步的预测结果进行下一步预测,而多输出结构则直接预测整个预测窗口的功率值,这有助于减少误差累积。
-
训练与验证:模型通过训练集进行训练,并在验证集上调整超参数,避免过拟合。
-
性能评估:使用测试集评估模型的预测性能,关注RMSE、MAE、MAPE等指标。
研究挑战与展望
- 特征表达:如何有效构建和提取风电功率序列中的时间特征是关键。
- 模型泛化能力:提高模型对未见数据的预测能力,减少过拟合风险。
- 混合模型探索:结合CNN与其他模型(如LSTM、注意力机制等)以提升预测精度和模型理解。
- 实时性和自适应性:增强模型在实际运行中的实时预测能力和对环境变化的快速响应。
综上,基于CNN的风电功率预测研究通过挖掘风力发电数据中的时空特征,为风电预测提供了一种有效的深度学习方法,对促进可再生能源的高效利用具有重要的理论和应用价值。
📚2 运行结果



部分代码:
layers0 = [ ...
% 输入特征
sequenceInputLayer([numFeatures,1,1],'name','input') %输入层设置
sequenceFoldingLayer('name','fold') %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
% CNN特征提取
convolution2dLayer([2,1],4,'Stride',[1,1],'name','conv1') %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
batchNormalizationLayer('name','batchnorm1') % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
reluLayer('name','relu1') % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
% 池化层
maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool') % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
% 展开层
sequenceUnfoldingLayer('name','unfold') %独立的卷积运行结束后,要将序列恢复
%平滑层
flattenLayer('name','flatten')
lstmLayer(25,'Outputmode','last','name','hidden1')
dropoutLayer(0.2,'name','dropout_1') % Dropout层,以概率为0.2丢弃输入
fullyConnectedLayer(outdim,'name','fullconnect') % 全连接层设置(影响输出维度)(cell层出来的输出层) %
regressionLayer('Name','output') ];
lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');
%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 150, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', 0.01, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率调整
'LearnRateDropPeriod',70, ... % 训练100次后开始调整学习率
'LearnRateDropFactor',0.01, ... % 学习率调整因子
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.
[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.
[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.
[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

835

被折叠的 条评论
为什么被折叠?



