数学分析(二十三)-向量函数微分学02:向量函数的微分01【可微性与可微条件】

§ 2 向量函数的微分
一、可微性与可微条件
无论是一元函数还是多元函数的可微性, 都是建立在局部线性近似基础上的.
例如,一元函数 f f f x 0 x_{0} x0 可微, 按其定义是指存在实数 a a a, 使得
x ∈ U ( x 0 ) x \in U\left(x_{0}\right) xU(x0) 时, 有
f ( x ) − f ( x 0 ) = a ( x − x 0 ) + o ( x − x 0 ) , f(x)-f\left(x_{0}\right)=a\left(x-x_{0}\right)+o\left(x-x_{0}\right), f(x)f(x0)=a(xx0)+o(xx0),
或者写成
lim ⁡ x → x 0 f ( x ) − f ( x 0 ) − a ( x − x 0 ) x − x 0 = 0. \lim \limits_{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)-a\left(x-x_{0}\right)}{x-x_{0}}=0 . xx0limxx0f(x)f(x0)a(xx0)=0.
而且进一步知道 a = f ′ ( x 0 ) a=f^{\prime}\left(x_{0}\right) a=f(x0), 并把
a ( x − x 0 ) = f ′ ( x 0 ) ( x − x 0 ) a\left(x-x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) a(xx0)=f(x0)(xx0)
称为 f f f x 0 x_{0} x0 的微分.
同样地, 二元实值函数 f f f
P 0 ( x 0 , y 0 ) \boldsymbol{P}_{0}\left(x_{0}, y_{0}\right) P0(x0,y0) 可微, 是指存在二维向量
c = ( α , β ) T \boldsymbol{c}=(\boldsymbol{\alpha}, \boldsymbol{\beta})^{\mathrm{T}} c=(α,β)T,
使得
P ( x , y ) ∈ U ( P 0 ) ⊂ R 2 \boldsymbol{P}(x, y) \in U\left(\boldsymbol{P}_{0}\right) \subset \mathbf{R}^{2} P(x,y)U(P0)R2
时, 有
f ( P ) − f ( P 0 ) = c ⊤ ( P − P 0 ) + o ( ∥ P − P 0 ∥ ) , f(\boldsymbol{P})-f\left(\boldsymbol{P}_{0}\right)=c^{\top}\left(\boldsymbol{P}-\boldsymbol{P}_{0}\right)+o\left(\left\|\boldsymbol{P}-\boldsymbol{P}_{0}\right\|\right), f(P)f(P0)=c(PP0)+o(PP0),
或者写成
lim ⁡ P → P 0 f ( P ) − f ( P 0 ) − c ⊤ ( P − P 0 ) ∥ P − P 0 ∥ = 0. \lim \limits_{\boldsymbol{P} \rightarrow \boldsymbol{P}_{0}} \frac{f(\boldsymbol{P})-f\left(\boldsymbol{P}_{0}\right)-\boldsymbol{c}^{\top}\left(\boldsymbol{P}-\boldsymbol{P}_{0}\right)}{\left\|\boldsymbol{P}-\boldsymbol{P}_{0}\right\|}=0 . PP0limPP0f(P)f(P0)c(PP0)=0.
而且进一步知道
c = ( f x ( P 0 ) , f y ( P 0 ) ) T c=\left(f_{x}\left(\boldsymbol{P}_{0}\right), f_{y}\left(\boldsymbol{P}_{0}\right)\right)^{\mathrm{T}} c=(fx(P0),fy(P0))T,
并把
c ⊤ ( P − P 0 ) = f x ( x 0 , y 0 ) ( x − x 0 ) + f y ( x 0 , y 0 ) ( y − y 0 ) \boldsymbol{c}^{\top}\left(\boldsymbol{P}-\boldsymbol{P}_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) c(PP0)=fx(x0,y0)(xx0)+fy(x0,y0)(yy0)
称为 f f f P 0 \boldsymbol{P}_{0} P0 的微分.
在 (1) 或 (1)’ 中的 a ( x − x 0 ) a\left(x-x_{0}\right) a(xx0) 与 (2) 或 (2)’ 中的
c ⊤ ( P − P 0 ) c^{\top}\left(\boldsymbol{P}-\boldsymbol{P}_{0}\right) c(PP0)
具有相同的形式与内涵,因而我们也把向量 c \boldsymbol{c} c 称做二元函数 f f f
P 0 \boldsymbol{P}_{0} P0 处的 “导数” (以前叫梯度), 并记作
f ′ ( P 0 ) f^{\prime}\left(\boldsymbol{P}_{0}\right) f(P0).尤其是把
a ( x − x 0 ) a\left(x-x_{0}\right) a(xx0)
c ⊤ ( P − P 0 ) \boldsymbol{c}^{\top}\left(\boldsymbol{P}-\boldsymbol{P}_{0}\right) c(PP0)
作为线性变换来认识时,我们能很自然地建立起一般向量函数的可微性概念.
定义 1 设 D ⊂ R n D \subset \mathbf{R}^{n} DRn 为开集,
x 0 ∈ D , f : D → R m x_{0} \in D, f: D \rightarrow \mathbf{R}^{m} x0D,f:DRm. 如果存在某个线性变换 A A A
(只依赖于 x 0 ) \left.x_{0}\right) x0), 使得
x ∈ U ( x 0 ) ⊂ D x \in U\left(x_{0}\right) \subset D xU(x0)D 时, 有
f ( x ) − f ( x 0 ) = A ( x − x 0 ) + o ( ∥ x − x 0 ∥ ) f(x)-f\left(x_{0}\right)=A\left(x-x_{0}\right)+o\left(\left\|x-x_{0}\right\|\right) f(x)f(x0)=A(xx0)+o(xx0)

  • 8
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值