eqtl-GWAS和GWAS-GWAS

本文介绍了遗传关联研究中的eqtl-GWAS和GWAS-GWAS模式,重点讲解了数据类型的区分(cc和quant),以及coloc.abf中的关键参数如样本量N和分类变量的处理。PP.H4后验概率被强调,用于评估表型间在同一因果变异位点的相关性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前教程中有eqtl-GWAS和GWAS-GWAS两种模式,其他模式比较少见,还未进行开发

数据类型cc为分类变量即case/control,quant为连续变量,eqtl数据默认quant

coloc.abf有两个比较需要注意的点,就是数据集中N是代表样本量,当表型为分类变量(cc)时,需要传入s(case占总样本量的比值)

PP.H0

表型1与表型2在区域减的所有SNP无显著相关

PP.H1/2

表型1与表型2在区域内的SNP位点显著相关

PP.H3

表型1与表型2在区域内的SNP位点显著相关,但是不同的因果变异位点

PP.H4

表型1与表型2在区域内的SNP位点显著相关,且是同一个因果变异位点

结果只需要查看后验概率PP.H4,代表两个性状在同一个位点的后验概率,范围在0-1之间,越高越好

部分文章也会参考H3+H4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮肤小白生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值