slam传感器数据处理Ⅱ——里程计标定

这篇博客介绍了线性最小二乘法在里程计标定中的应用。主要内容包括线性最小二乘的基本原理,如适定、欠定和超定方程组的解,以及在非线性问题中的应用。此外,还讨论了最小二乘的直线拟合,通过例子展示了如何处理噪声和使用RANSAC。最后,探讨了两种里程计标定方法,直接线性和基于模型的方法,它们在精度和实现复杂性上的区别。
摘要由CSDN通过智能技术生成

用最小二乘法标定

1、线性最小二乘的基本原理

通用性好,效果一般。(pid),

  1. 线性方程组Ax=b

    𝐴为𝑚 × 𝑛的矩阵。
    x为𝑛 × 1的向量

行表示约束,列表示自由度(未知数的维度);

当m=n时,适定方程组,方程组有唯一解

当m<n时,欠定方程组,方程组有无穷解

当m>n时,超定方程组,方程组有通常无解 (最多的)

  1. 绝大多数情况为m>n,超定方程组

    无解,可以寻找最靠近真实解的解
    无解但是有最小二乘解
    *通解: 𝑥∗ = (𝐴𝑇𝐴)−1𝐴𝑇𝑏

如果一个系统AX=B 是病态的(AX=B+&b)会导致最终结果偏差非常大。

  1. 最小二乘的求解—线性空间的角度
    • 𝐴𝑥表示𝐴的列向量空间ᵄ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值