非小细胞肺癌肿瘤内微生物群图谱及预后关联

一、写在前面

本次分享的是2025年1月发布于《CLINICAL AND TRANSLATIONAL MEDICINE》的题为"Unravelling the prognostic and operative role ofintratumoural microbiota in non-small cell lung cancer:Insights from 16s rRNA and RNA sequencing"的文章。在这个聚焦于前沿探索的时代,我们同样需要关注那些能够夯实科研基础、拓展研究视野的优秀成果。本文正是一篇这样的文章。它深入探讨了小细胞肺癌(NSCLC)肿瘤内微生物群与预后之间的关键联系。研究采用了16S rRNA和RNA测序技术,结合详尽的数据分析,揭示了与NSCLC预后显著相关的微生物群,并深入探讨了其潜在的调控机制,尤其是关键属 Peptococcus 与 TNF 信号通路之间的关联。其研究内容对于理解NSCLC的发病机制、探索新的诊断和治疗靶点具有重要的参考价值。它不仅为我们呈现了一幅肿瘤微环境微生物群落的复杂图景,更提示了未来研究的潜在方向。对于从事肺癌研究,特别是关注肿瘤微环境和微生物组学的研究者而言,本文无疑是一篇值得深入研读的文献。

感兴趣的同学可以看看原文:

Mao F, Hu Z, Shi R, Zhang H, Zhang Z, Li Y, Li X, Gao P, Li J, Liu M, Liu H, Chen J. Unravelling the prognostic and operative role of intratumoural microbiota in non-small cell lung cancer: Insights from 16S rRNA and RNA sequencing. Clin Transl Med. 2025 Jan;15(1):e70156. 

二、背景知识

非小细胞肺癌 (NSCLC) 约占所有肺癌病例的 80-85%。在中国,NSCLC 的发病率和死亡率同样居高不下,对公众健康构成严重威胁。最常见的 NSCLC 组织学亚型是肺腺癌 (LUAD),其次是肺鳞状细胞癌 (LUSC)。在全球范围内,LUAD 的患病率越来越高,并且在女性中的发病率逐渐呈现上升趋势。因此,亟需确定预防和治疗肺癌的分子策略,以应对这一严峻的健康挑战。近年来,微生物群与不同疾病之间的相关性已得到全面研究。随着对肿瘤研究的深入,人们早已摒弃了肿瘤是无菌环境的观点,并在多种癌症中发现了微生物的存在。这些微生物群很可能是肿瘤细胞和肿瘤微环境 (TME) 的关键组成部分。

 目前,包括胃癌中的幽门螺杆菌、结直肠癌 (CRC) 中的具核梭杆菌和宫颈癌中的人乳头瘤病毒在内的多种微生物,被认为与肿瘤的发生发展密切相关。另一方面,在肿瘤中也发现了具有保护作用的益生菌。研究表明,嗜黏蛋白阿克曼菌可以通过多种途径抑制肿瘤生长,例如激活细胞凋亡、调节肿瘤免疫微环境 (TIME) 或产生特定的代谢物。尽管许多研究已经报道了 微生物群与肿瘤之间的联系,但 微生物群与 NSCLC 之间的关联仍不清楚;特别是,尚无研究检查 NSCLC 患者的 微生物群群预后情况。因此,在本研究中,我们筛选了 NSCLC 中的预后 微生物群,并探讨了潜在的分子机制。

我们的目标是查明影响这些患者 NSCLC  预后结果的关键 微生物群,并为患者管理和癌症筛查提供依据。

三、主要结果

3.1. 人口统计学和临床特征

我们收集了来自原发性 NSCLC 患者的 30 对癌性和相邻正常组织,包括 17 名 LUAD 患者和 13 名 LUSC 患者。其中,男性 23 例,女性 7 例。患者的中位年龄为 64 岁(范围 46-83 岁)。参与者主要患有 II-IV 期 NSCLC,其中 19 例淋巴结转移,19例吸烟者。在最终随访时,16 名患者出现复发 (53.3%),14 名患者死亡 (33.3%)。中位OS 为 952 天,而中位 PFS 为 526.5 天。患者临床特征如表 S1 和 S2 所示。

3.2. 16S rRNA 和 RNA 测序

从 16S rRNA 测序来看,来自肿瘤和相邻正常组织样本的平均读段数分别为 77192 和 76981。所有有效的样本标签聚类成具有 97% 同一性的 OTU,共获得 10665 个 OTU。经过注释和筛选后,1022 个属进行了生物信息学分析。从转录组测序来看,平均原始计数为 91193198,过滤后的平均清洁计数为 88007549。最后,注释了 57299 个 RNA 并用于分析。

3.3. 癌性组织微环境: 微生物群落组成的显著差异

结果显示,无论是 Chao1 指数还是 Shannon 指数,癌性组织(NSCLC、LUSC 和 LUAD)的 alpha 多样性均高于对应的正常组织。这种差异在统计学上并不显著,可能是由于样本量小。有趣的是,LUSC 样本的 Chao1 指数往往高于 LUAD 样本,而 Shannon 指数的趋势则相反(图 1A)。

 1. 比较癌性和正常组织之间的微生物多样性。(A) 基于 Chao1 Shannon 指数,在 NSCLCLUADLUSC 和配对正常组织样本之间进行了 alpha 多样性比较。(B-D) 使用置换多元方差分析测试 (PERMANOVA) 比较了组织样本之间的 beta 多样性(Bray-Curtis 距离)。主坐标分析用于可视化数据降维分析。NSCLC,非小细胞肺癌;LUAD,肺腺癌;LUSC,肺鳞状细胞癌;normalNSCLC的正常组织;normal_ADLUAD 的正常组织;normal_SCLUSC 的正常组织。

接下来,我们分析了 beta 多样性。在 NSCLC 和匹配的正常组织之间观察到统计学上的显著差异 (p = .017;图 1B)。在区分亚型后,我们观察到 LUSC 和匹配的正常组织之间的 beta 多样性差异(LUSC vs. normal_SC:p = .036;图 1C)。然而,未发现 LUAD 的多样性差异(LUAD vs. normal_AD:p = .266;图 1D)。因此,与正常组织相比,LUSC 组织具有更独特的微生物组成。

3.4. 跨组织类型的微生物群比较

为了进一步确定微生物组成,我们列出了在门、纲、目和科水平上的高丰度微生物群 (HAM)(平均排名中的前 10 名)以及跨 NSCLC 组织学类型的低丰度微生物群 (LAM)(其他)。在四个水平上的 HAM 组成在不同组织类型之间完全不同。在门水平上,LUAD 中的变形菌门、蓝细菌门、酸杆菌门和绿弯菌门均高于其他类型,但 LUAD 中的总 LAM 水平最低。相反,LUSC 中的酸杆菌门和疣微菌门显著低于其他类型,但总 LAM 水平最高(图 2A)。未识别的微生物群在本研究中未进行深入分析。

 2. 比较不同组织类型之间的微生物组成。(A  B) 不同组织类型中门和纲水平上的组成微生物群差异。每个分类水平上的前 10 名微生物群被指定为高丰度微生物群,其余的被指定为低丰度微生物群。热图(左图)中的值是按行标准化的丰度值,目的是比较不同组织类型中每种微生物群的丰度差异。条形图(右图)显示了每种单一组织类型中这些微生物群的丰度比例。(C) 显示了 LUAD  LUSC 之间具有差异丰度的微生物属 (p < .01|logFC| > 1) (DESeq2)(D) 生态网络显示了 LUAD LUSC 中不同微生物属之间相关性的差异 (SparCC)

在纲水平上,八个 HAM 纲主要来源于四个门:变形菌门(包括 γ-变形菌纲、α-变形菌纲和 δ-变形菌纲)、厚壁菌门(包括梭菌纲、芽孢杆菌纲和丹毒丝菌纲)、拟杆菌门(包括拟杆菌纲)和疣微菌门(包括疣微菌纲)。此外,与其他类型相比,γ-变形菌纲和 α-变形菌纲以及这两个纲所属的变形菌门在 LUAD 中都是最丰富的(图 2B)。

通过综合分析这四个水平上的微生物组成,LUAD 中的“其他”水平在所有组织类型中始终较低(图 S1)。为了进一步检查 LUAD 和LUSC 样本之间的微生物组成差异,我们鉴定了 19 种不同的微生物属 (p < .01)。显示了前 16 个属,其中 14 个在 LUAD 中高度丰富,2 个在 LUSC 中高度丰富(图 2C)。我们的微生物生态网络还显示,LUAD 和 LUSC 中这些不同属的相关性显著不同(图 2D)。这表明 LUAD 和 LUSC中不同微生物属的相互连接是不同的。因此,我们认为 LUAD 微生物组成与 LUSC 不同。

3.5. 癌性和正常组织之间差异微生物属分析

我们还对 NSCLC、LUAD、LUSC 和正常组织之间的微生物属进行了分析。最终,56 个属显示出丰度差异,其中 12 个属在癌症和正常组织之间表现出显著差异。这些属包括肿瘤中的 11 个 HAM 属(AnaerovoraxMarivivensDonghicolaLachnospiraDubosiellaLactobacillusMethylobacteriumAkkermansiaPaenibacillusAerococcus和 Cloacibacterium)和正常组织中的 1 个 HAM 属 (Campylobacter,p < .05;图 3A)。接下来,我们评估了这些属在区分 NSCLC 和正常组织方面的准确性。至关重要的是,五个属的曲线下面积 (AUC) 值超过 0.6,包括 Aerococcus (AUC = 0.629)、Paenibacillus (AUC = 0.643)、Lachnospira (AUC = 0.626)、Cloacibacterium (AUC = 0.622) 和 Dubosiella (AUC = 0.633;图 3B-F)。任何单个属都无法准确预测样本是 NSCLC 肿瘤组织还是正常良性组织。从这些观察结果来看,我们试图提供一个微生物NSCLC 诊断模型(表 S3),其诊断准确度 = 0.862(图 3G)。该模型未来仍需更多队列的验证。

 3. 癌症和正常组织之间差异微生物属。(A) NSCLCLUSCLUAD 和配对相邻正常组织之间的微生物属差异。三种比较(NSCLC vs. normalLUSC vs. normal_SCLUAD vs. normal_AD)中总共 12 种始终存在差异的微生物属被认为是构建诊断模型的关键差异微生物属。(B-F) 五种关键差异微生物属的受试者工作特征 (ROC) 分析中的曲线下面积 (AUC) 值为 0.6(G) NSCLC 诊断模型(由五个属组成)的 AUC 值为0.862(H) 11 种肿瘤内高度富集属的生态网络分析(SparCC,相关系数 > 0.4)(I) 火山图显示了癌症和相邻正常组织之间的 DEG (FDR < 0.05|log2FC| > 1)。红色表示肿瘤中的高基因表达,灰色表示两组之间没有基因表达差异,绿色表示肿瘤中的低基因表达。(J) 与肿瘤内高度富集微生物属相关的 DEG  KEGG 途径富集分析 (FDR < 0.05;相关系数 > 0.4)

为了了解 11 种 HAM 属在 NSCLC 中的作用,我们进行了相关性和功能分析。我们的生态网络显示了这 11 个属之间的复杂相关性,但没有观察到密切相关的群集(图 3H)。然后,我们整合了差异表达和相关性分析(图 3I),并确定了 580 个属相关基因。从京都基因与基因组百科全书 (KEGG) 分析来看,上述微生物群可能与上皮细胞分化和代谢相关功能有关(图 3J)。

3.6. 与预后相关的微生物群的鉴定

我们使用单变量 Cox 回归对多水平微生物群进行了与预后相关的分析;一个门、一个纲、五个目、八个科和18 个属与 OS 显着相关,而四个门、五个纲、九个目、16 个科和 28 个属与 PFS 显着相关(图4A,B)。其中,一个门(Rokubacteria)、一个纲(Thermoplasmata)、五个目(Sphingomonadales、Methanomassiliicoccales、Frankiales、Micropepsales、Glycomycetales)、七个科(Sphingomonadaceae、Methanomassiliicoccaceae、Micropepsaceae、Barnesiellaceae、Heliobacteriaceae、Kiloniellaceae 和 Glycomycetaceae)和 10 个属(SphingobacteriumXanthobacterPantoeaMethylophilusOscillospiraHydrogenisporaWoeseiaPusillimonasPeptococcus和 Glycomyces)与 OS 和 PFS 显着相关(图 4C)。这些微生物群与 OS 和PFS 表现出一致的有益或有害关系,进一步证实了它们在 NSCLC 预后中的重要作用。

 4. 筛选 NSCLC 中与预后相关的微生物群。(A  B) 使用单变量 Cox 回归 (p < .05) 进行的与 OS  PFS 相关的微生物群预后筛选,分别在门、纲、目、科和属水平进行。HR > 1  <1 分别代表风险因素和保护因素。(C) 维恩图显示了微生物群之间的组成关联。

3.7. 与预后相关的微生物群的功能分析

我们最初对 36 个与预后相关的微生物属进行了相关性分析。在消除弱相关性后,生态网络中呈现了 23个属(图 5A)。其中,在九个属中发现了一种正相关,所有这些属都与更长的 PFS 相关 (HR < 1)。因此,这九个属被称为保护性微生物群 (PMC)。我们还发现了三个正相关的属,所有这些属都与较短的 OS 和 PFS 时间相关 (HR > 1);因此,这些被称为有害微生物群 (HMC)。

 5. NSCLC 中预后微生物属的生态网络 (SparCC,相关性 > 0.4)(B-D) 与预后微生物群相关的基因的 KEGG 途径富集分析。

为了进一步探索潜在的群集功能,我们使用了单变量 Cox 回归和相关性分析。PMC 与214 个 PFS 基因相关 (p < .01),而 HMC 与 186 个 OS 基因 (FDR < 0.05) 和 153 个 PFS 基因相关 (p < .01, 表 S4-S6)。KEGG 富集分析显示,PMC主要与代谢相关通路有关,包括胰高血糖素信号通路、精氨酸和脯氨酸代谢、硫辛酸代谢、核苷酸糖的生物合成和丙酮酸代谢(图 5B)。HMC 主要与免疫和炎症相关(例如Th17细胞分化, NF-κB信号传导等),微生物感染和肿瘤相关信号传导途径有关(图 5C,D)。推测,PMC 主要通过代谢相关功能发挥保护作用,而 HMC 主要通过感染入侵影响预后,从而诱导炎症、免疫和肿瘤相关途径的变化。

3.8. 构建微生物预后模型并分析预后差异机制

十个属显示出与 OS 和 PFS 结果的相关性。通过筛选(LASSO 和多变量 Cox 回归分析),在 28 名 NSCLC 患者的队列中使用六个属(XanthobacterPantoeaOscillospiraHydrogenisporaPeptococcus和 Glycomyces) 构建预后模型(图 6A,B 和表 S7)。该模型准确区分了患者的 OS (p < .0001),1、3 和 5 年的 AUC 值分别为 0.9916、1.0000 和0.9649(图 6C,D)。该模型还预测了患者的 PFS (p < .0001),1、3 和 5 年的 AUC 值分别为0.9487、0.9066 和 0.8623(图 6E,F)。该模型在预测 LUAD 和LUSC 患者的 OS 和 PFS 结果方面也表现良好(LUAD-OS:p < .0001,LUSC-OS:p = .0006,LUAD-PFS:p = .0001,LUSC-PFS:p = .0020;图 S2)。因此,我们的由六个属组成的模型显示出对患者 NSCLC 预后的良好预测准确性。

 6. 微生物属的预后模型。(A) 我们 NSCLC 队列中微生物属的 LASSO Cox 分析。与 OS 相关的每个微生物属的系数表示为曲线。(B) 基于使用 10 倍交叉验证的最小偏似然偏差确定惩罚参数 (λ) 值。(C  E) Kaplan-Meier 生存曲线显示了高风险组和低风险组患者之间的 OS  PFS 差异。(D  F) 在预测患者 1 5 年的 OS  PFS 的受试者工作特征 (ROC) 分析。(G) 高风险组和低风险组患者之间基因表达和临床特征(性别、年龄、分期、亚型、吸烟状况和淋巴结状况)的差异。(H) KEGG 途径富集分析显示了微生物群模型对预后的影响。

在比较高风险组和低风险组时,未发现 alpha 和 beta 多样性指标存在显著差异。低风险组的 Alpha 多样性略高于高风险组(图 S3A,B),这表明预后较差的患者可能具有更不利的 TME。这种不利的 TME 可能不适合某些微生物群的生存。我们假设 TME 可能在肿瘤内微生物群的筛选中发挥关键作用。因此,微生物群可能有可能作为有价值且新颖的生物标志物发挥作用。此外,相关性分析表明,在六个属中(所有不利因素),Hydrogenispora和 PantoeaPeptococcus和 Xanthobacter以及 Oscillospira和 Glycomyces
表现出更紧密的相关性(图 S3C)。根据预后结果,这些属在高风险组中相当普遍(图 S3D)。

为了进一步探索微生物群是否影响肿瘤基因表达,我们进行了 DEG 分析,并观察到高风险组和低风险组之间存在明显的基因表达谱。其中,低风险组中有82 个基因上调,高风险组中有 63 个基因上调(FDR < 0.05 和 |LogFC| > 1;图 6G)。为了进一步确定潜在机制,我们对六个属和 DEG 进行了相关性分析,最终确定了 37 个相关基因。KEGG 富集结果表明,感染(疟疾、金黄色葡萄球菌和乙型肝炎)、炎症(白介素(IL)-17 和 NF-κB 信号传导)和免疫调节(B 细胞受体信号传导)是微生物群影响预后结果的主要途径(图 6H)。这类似于 HMC 预后相关途径。因此,微生物群可能通过引起感染并诱导炎症和免疫反应来影响预后结果。

3.9. Peptococcus属可能通过肿瘤坏死因子信号传导影响预后

鉴于 LUAD 和 LUSC 的微生物组成各不相同,我们分别对 LUAD 和 LUSC 中的微生物属进行了预后筛选(图 7A-D),这表明跨组织类型的预后相关微生物属的组成差异。特别是,Peptococcus在 NSCLC、LUAD 和 LUSC 的预后方面显示出最积极的结果(p < .05;图 7E)。此外,高风险组中 Peptococcus的水平显着高于低风险组(p < .01;图 S3D)。因此,Peptococcus与较差的预后显著相关。

 7. 筛选 LUAD  LUSC 中与预后相关的微生物属。(A-D) 使用单变量 Cox 回归(p < .05) 进行的 LUAD  LUSC 中与 OS  PFS 相关的微生物属的预后筛选。HR > 1  <1 分别代表风险因素和保护因素。(E  F) 维恩图显示了预后微生物属之间的组成关联。

使用 MR,我们确定了 Peptococcus与肺癌(p = .017,比值比(OR) = 1.149)和 LUSC(p = .014,OR = 1.246)之间存在显著的因果关系,但与 LUAD 无显著相关性(p = .602,OR = 1.047;图 8A)。同样,在反向 MR 分析中,未发现肺癌与 Peptococcus之间存在因果关系。MR 分析的结果表明 Peptococcus可能对 NSCLC 具有促进作用,但NSCLC 对 Peptococcus没有影响。因此,Peptococcus很可能是一种影响 NSCLC 预后结果的新属。

 8. 支持 Peptococcus 对预后的影响的潜在机制。(A) 孟德尔随机化用于测试 Peptococcus、肺癌、LUAD  LUSC 之间的因果关系,使用逆方差加权、加权中位数和 MRPRESSO 方法。当未发生异质性和多效性 (p > .05),并且至少一种测试方法产生阳性结果 (p < .05) 时,暴露和结果之间存在阳性因果关系。(B) 使用多变量 Cox 回归分析来测试 Peptococcus 对预后的影响是否独立于常见的临床因素(年龄、吸烟状况、分期、亚型和淋巴结状况)。(C) 使用 DESeq2 edgeR 筛选基于患者中 Peptococcus 水平划分的组之间的 DEG (FDR < 0.05)49  DEG 在两种方法中都表现出统计差异,并被指定为常见 DEG(D) 49 个常见 DEG KEGG 途径富集分析。(E) 通过蛋白质-蛋白质相互作用网络 (PPI)  49 个基因产物(对应于常见 DEG)中筛选出的 13 个核心基因产物的网络(相互作用评分 > 0.4)。红色基因代表来自 TNF 信号通路的基因。(F-H) 13 个核心基因、GSE31210  GSE50081 数据集的预后关系的单变量 Cox 回归分析。非显着 (NS) 值用 p >0.05 表示,表示 p < 0.05**表示  p < 0.01***表示 p < 0.001

考虑到大多数患者处于 II-IV 期,为了验证该结论在早期 NSCLC 患者中是否适用, 我们还在两个 I-II 期 NSCLC 数据集中进行了相同的分析,发现 CXCL1 与 GSE31210 数据集中的预后显着相关 (HR = 1.42, 95% CI: 1.12–1.81, p < .01),PTGS2 与 GSE50081 数据集中的预后显着相关 (HR = 1.18, 95% CI: 1.05–1.32, p < .01;图 8G,H)。因此,Peptococcus 可能通过影响 TNF 信号传导导致 NSCLC 患者的不良预后。

四、讨论

目前,NSCLC 中的微生物群研究尚处于早期阶段,缺乏足够的证据将特定微生物群与该疾病直接联系起来。因此,识别 NSCLC 中的关键微生物群和组成特征可能有助于改进临床管理方法。在本研究中,我们对 30 个 NSCLC和相邻组织对进行了 16S rRNA 和转录组测序,并记录了患者的预后信息。NSCLC中的微生物组成与正常组织不同,LUAD 和 LUSC 之间存在差异。更重要的是,我们确定了四个门、五个纲、九个目、17 个科和 36 个属与疾病预后显著相关。在 36 个属中,PMC(九个属)与更长的 PFS 相关,并表明与代谢功能有关。相反,HMC(三种微生物群)与较短的 OS 和 PFS 相关,并表明与感染、炎症和免疫途径有关。此外,Peptococcus 被确定为 NSCLC 患者预后不良的独立风险因素,并可能通过 TNF 信号传导介导其作用。这些发现表明肿瘤内微生物群在 NSCLC 发病机制中起着至关重要的作用,并可能为未来的研究提供新的视角。本研究的流程图如图 9 所示。

图 9. 研究工作流程 (在 Figdraw 中组装)。NSCLC,非小细胞肺癌;LUAD,肺腺癌;LUSC,肺鳞状细胞癌;uni-Cox,单变量 Cox 回归;multi-Cox,多变量 Cox 回归;OS,总生存期;PFS,无进展生存期;MR,孟德尔随机化;DEGs,差异表达基因;KEGG,京都基因与基因组百科全书;PPI,蛋白质-蛋白质相互作用。

本研究中 alpha 多样性的比较结果与上述研究有所不同,提示该现象仍有待进一步研究证实。在检查不同组织类型之间的 beta 多样性时,与正常组织相比,只有 LUSC 表现出更明显的微生物差异。这一发现表明,LUSC 可能由于其独特的微环境和免疫特性,导致了更为显著的微生物组成差异。这一现象的临床意义需要通过更大规模的样本进行验证,以确保微生物的潜在诊断价值。类似地,在 LUAD 和 LUSC 的微生物分析中,我们发现存在大量丰度差异的微生物属,且这些属在两种组织类型中的相关性也存在差异。这些观察结果与先前的研究结果类似,并可能有助于未来 NSCLC 中的微生物研究。

在癌症和正常组织之间的差异分析中,我们确定了 12 种显著不同的属。其中,Methylobacterium 先前与胃癌的不良预后结果相关。此外,两种益生菌(Lactobacillus 和 Akkermansia)也在 NSCLC 组织中富集。先前的研究报告表明,Lactobacillus 抑制肿瘤细胞向肺部的转移,并在体外实验中显示出抗肿瘤活性。A. muciniphila 还增强了顺铂在 Lewis 肺癌小鼠中的抗肿瘤作用,并且可能与有效的免疫疗法有关。虽然这些微生物群显示出与癌症的相关性,但它们在 NSCLC 中的作用仍然不明确;因此,未来的研究必须验证这些观察结果。

我们也观察到一些与既往研究相悖的现象。例如,在本研究中,Dialister与较好的预后相关,但 Lyu 等人的研究表明 Dialister 与口腔鳞状细胞癌的复发相关。同样,Parabacteroides 与我们研究中的早期复发相关,但在其他地方,Parabacteroides distasonis 增强了膀胱癌的免疫疗法反应。此外,所有其他 26 种与预后相关的微生物属都被认为是首次与肿瘤相关。

然后,我们对两个微生物群进行了功能预测。类似于预后模型功能结果,PMC 主要与代谢相关途径相关,而 HMC 主要与感染、免疫和炎症途径相关。上述结果与以往的肠道微生物群和癌症研究结果基本吻合。目前,微生物代谢物主要包括次级胆汁酸、短链脂肪酸 (SCFA)、多胺以及色氨酸和相关的衍生物。一些研究表明,色氨酸代谢物、共轭亚油酸、SCFA 和多酚代谢物可以预防 CRC 的发生,而丁酸钠对乳腺癌发挥抗肿瘤活性。其他研究报告说,微生物群与免疫和炎症密切相关;例如,具核梭杆菌促进 IL-8 和 CXCL1 的排泄,从而抑制 HCT116(人结直肠癌)细胞的增殖和迁移。此外,微生物群还通过直接入侵或分泌毒力因子来引起 DNA 损伤,从而促进肿瘤发生和疾病进展;例如,伤寒沙门氏菌分泌多种毒力因子并引起 DNA 损伤和炎症。因此,我们推测肿瘤内微生物群的功能与肠道微生物群相似。总的来说,我们在 NSCLC 肿瘤中发现了保护性和有害的微生物群;PMC 对免疫的影响较小,主要通过代谢相关途径发挥抗肿瘤作用,而 HMC主要通过细胞入侵促进肿瘤进展,并诱导炎症和免疫反应。

我们开发了一种利用 10 种与 OS 和 PFS 相关的微生物属的预后模型。该模型在确定患者 5 年内的生存和复发状态方面表现出很高的准确性。这为 NSCLC 患者的预后分层管理提供了一种新的生物标志物。在我们的分析中,许多微生物群似乎是肿瘤的有害或有益因素。与此同时,我们还观察到不同预后(高风险和低风险)患者的微生物多样性存在差异的趋势。这表明微生物群和肿瘤之间的相互作用是相互的。先前的研究表明,癌症可以控制中枢神经内分泌和免疫系统,并重置身体的稳态,以牺牲宿主为代价来促进其扩张。预后可能代表局部 TME 甚至身体稳态的差异,这可能直接影响肿瘤内微生物组成的特征。相反,某些微生物群可能以多种方式促进或抑制肿瘤的发生和发展,包括但不限于它们的代谢物。综上所述,全面了解微生物群和肿瘤之间复杂的关系对于未来的循证和综合治疗策略至关重要。

我们还观察到,Peptococcus 是 NSCLC 的主要独立预后因素,它的出现可能意味着患者的预后不良。在先前的研究中,在口腔鳞状细胞癌中鉴定了相当数量的 Peptococcus;然而,Peptococcus 在肿瘤中的作用仍然不清楚。研究表明,Peptostreptococcus anaerobius 能够与 CRC 细胞中的整合素 α2β1 相互作用,并通过激活 NF-κB 促进 CXCL1 的分泌。CXCL1 进一步与骨髓源性抑制细胞 (MDSC) 上的 C-X-C 趋化因子受体 2 (CXCR2) 结合,促进 MDSC 迁移,减少功能性 T 细胞浸润,最终形成有利于 CRC 发展的免疫抑制微环境。另一项研究报告说,革兰氏阴性细菌通过上调 PTGS2 或 PTGES 表达并将花生四烯酸转化为前列腺素 E2,从而促进 CRC 细胞的增殖。有趣的是,Peptococcus 和 Peptostreptococcus 属都与梭菌目有关,并且具有相似的结构,从而为后续研究提供了证据。此外,Harioudh 及其同事表明,IRF1 发挥了抗菌保护作用。总而言之,这些研究结果表明 CXCL1、PTGS2、IRF1 和微生物群之间存在紧密的联系,这些基因可能会引发免疫和炎症反应。因此,Peptococcus 可能是 NSCLC 中一种新发现的关键微生物群,通过调节炎症和免疫环境来影响患者的预后。我们通过孟德尔随机化分析发现 Peptococcus 的丰度可能通过 TNF 信号通路影响 NSCLC 患者的预后。

必须承认,本研究受到某些限制。首先,必须承认这是一项小规模的组学研究。此外,在本文中,仅使用 GWAS 和 RNA 数据作为外部验证数据集,而不包括外部微生物验证队列。这些结果尚未在体外和体内实验中得到验证。此外,有许多因素会影响患者的预后,例如肿瘤突变、术后治疗和其他疾病。本研究的预后分析中没有考虑这些因素。未来的研究应进一步探索 Peptococcus 在 NSCLC 发生发展中的具体机制,以期为患者带来更有效的治疗方案。

基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基于JavaWeb的学息管理系统课程设计源码+数据库+文档报告(99分项目)基
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值