MOT多目标跟踪算法总结(一)待完善

本文介绍了多目标追踪的基本概念和关键步骤,重点关注基于卡尔曼滤波和匈牙利、KM匹配的追踪优化算法,如SORT和DEEP-SORT,强调了实时性和依赖于目标检测算法的重要性。此外,还提到了基于多线程的单目标跟踪器和端到端的多目标跟踪算法,如KCF、LEDS和SST,并指出它们的特点和局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多目标追踪顾名思义就是跟踪视频画面中的多个目标,得到这些目标的运动轨迹;核心在于目标检测和数据关联,即在每一帧进行目标检测,再利用目标检测的结果来进行目标跟踪,后面一步一般称之为数据关联,数据关联更多依赖于手工特征提取(外观特征、运动特征、形状特征)。下面就多目标跟踪算法总结归纳为以下几类:

多目标追踪算法归纳

一.基于卡尔曼滤波和匈牙利、KM匹配的后端追踪优化算法

代表性的应用有SORT、DEEP-SORT

这类算法特点在于能达到实时性,是目前工程应用上主流的算法.
但依赖于检测算法效果要好,特征区分要好输出最终结果的好坏依赖于较强的检测算法,而基于卡尔曼加匈牙利匹配的追踪算法作用在于能够输出检测目标的id,其次能保证追踪算法的实时性),这样追踪效果会好,id切换少。相关论文和代码如下

  • DeepSort : Wojke, Nicolai and Bewley, Alex and Paulus, Dietrich “Simple Online and Realtime Tracking with a Deep Association Metric” [paper][ code] In ICIP 2017
    Sort : Bewley, Alex and Ge, Zongyuan and Ott, Lionel and Ramos, Fabio and Upcroft, Ben “Simple Online and Realtime Tracking”[paper][code] In ICIP 2016.

基本原理:核心:轨迹处理和状态估计、关联问题(匈牙利匹配)、级联匹配、特征描述器
1.引入了线性速度模型与卡尔曼滤波来进行位置预测,在无合适匹配检测框的情况下,使用运动模型来预测物体(track)的位置
2.使用马氏距离或深度特征余弦距离进行相似性度量
3. 采取级联匹配,优先匹配距上次出现间隔短的目标

相似性度量公式
  • 欧式距离
    d i s t a n c e = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 distance=\sqrt{ {(x_2-x_1)^2}+{(y_2-y_1)^2}} distance=(x2x1)2+(y2y1)2

  • 余弦距离
    d i s t a n c e = c o s ( θ ) = x → . y → ∣ ∣ x ∣ ∣ . ∣ ∣ y ∣ ∣ distance=cos(\theta)=\frac{\stackrel{\rarr}x.\stackrel{\rarr}y}{||x||.||y||} distance=cos(θ)=x.yx.y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值