Robosense速腾激光雷达使用坐标变换功能

Robosense速腾激光雷达使用坐标变换功能

1 简介

rslidar_sdk 提供了内置的坐标变换功能,可以直接输出经过坐标变换后的点云,显著节省了用户对点云进行坐标变换的操作耗时(128线雷达一帧点云坐标变换耗时约3~5ms)。本文将指导用户如何使用rslidar_sdk的内置坐标变换功能, 输出经过变换后的点云。

2 依赖介绍

若希望启用坐标变换功能,需要安装以下依赖。

Eigen3

安装方式:[《视觉SLAM十四讲》第三章阅读笔记(补充阅读,Eigen介绍)](https://blog.csdn.net/weixin_47552638/article/details/121002247)
3 编译

若希望启用坐标变换的功能,在编译程序时需要将ENABLE_TRANSFORM选项设置为ON.

直接编译

   cmake -DENABLE_TRANSFORM=ON ..
   make -j4

ROS

   catkin_make -DENABLE_TRANSFORM=ON

ROS2

   colcon build --cmake-args '-DENABLE_TRANSFORM=ON'
4 参数设置

用户需要设置lidar部分的隐藏参数x, y, z, roll, pitch ,yaw ,。此处为参数文件的一个示例,可根据实际情况配置。

common:
  msg_source: 1                                       
  send_packet_ros: false                                
  send_point_cloud_ros: true                            
  send_packet_proto: false                              
  send_point_cloud_proto: false                         
  pcap_path: /home/robosense/lidar.pcap     
lidar:
  - driver:
      lidar_type: RS128            
      frame_id: /rslidar           
      msop_port: 6699              
      difop_port: 7788             
      start_angle: 0               
      end_angle: 360             
      min_distance: 0.2            
      max_distance: 200           
      use_lidar_clock: false       
	  x: 1
	  y: 0
	  z: 2.5
	  roll: 0.1
	  pitch: 0.2
	  yaw: 1.57
### 将镭神激光雷达数据转换为Velodyne格式的方法 为了实现将镭神激光雷达的数据转换成Velodyne格式,在ROS环境中可以借鉴已有的工具和技术来完成这一目标。通常情况下,这种转换涉及几个主要方面: - **点云消息类型的匹配**:不同品牌的激光雷达设备所发布的点云消息类型可能有所不同。例如,镭神激光雷达可能会发布`sensor_msgs/PointCloud2`的消息,而要将其适配到Velodyne格式,则需确保最终输出的点云消息结构与Velodyne传感器的标准相一致。 - **坐标系变换**:由于各个品牌的产品设计差异,它们之间的坐标轴定义也可能存在区别。因此,在进行数据格式转换的同时还需要考虑并实施必要的坐标系调整,以保证转换后的点云能够在预期的应用场景下正常使用[^1]。 基于上述需求,一种可行的做法是开发或利用现有的ROS包来进行特定于镭神至Velodyne格式间的转换工作。考虑到已有项目如`rs_to_velodyne`实现了Robosense速腾)到Velodyne格式的成功转变,这表明通过编写类似的自定义节点是可以达成目的的。具体来说,可以通过以下方式着手: #### 创建ROS节点用于处理点云转换 创建一个新的ROS包作为起点,并在此基础上构建专门针对镭神LiDAR特性的转换逻辑。此过程中应当仔细研究镭神提供的SDK文档以及其默认输出的点云特性,从而确定哪些字段需要被映射或者重新计算以便符合Velodyne标准的要求。 ```bash catkin_create_pkg chuangxin_to_velodyne std_msgs sensor_msgs rospy roscpp pcl_conversions ``` 接着,在该包内建立一个名为`chuangxin_pointcloud_converter.py`的新Python脚本文件,其中包含了核心算法负责执行实际的数据结构调整任务。 ```python #!/usr/bin/env python import rospy from sensor_msgs.msg import PointCloud2, PointField import numpy as np import struct def convert_chuangxin_to_velodyne(chuangxin_cloud): velodyne_fields = [ PointField('x', 0, PointField.FLOAT32, 1), PointField('y', 4, PointField.FLOAT32, 1), PointField('z', 8, PointField.FLOAT32, 1), PointField('intensity', 12, PointField.UINT32, 1) ] # 假设输入是一个numpy数组形式的点云数据 points_data = read_points_from_chuangxin_msg(chuangxin_cloud) # 构建新的点云对象 converted_cloud = pc2.create_cloud( header=chuangxin_cloud.header, fields=velodyne_fields, points=[(p[0], p[1], p[2], int(p[3]*256)) for p in points_data] ) return converted_cloud if __name__ == '__main__': try: rospy.init_node('chuangxin_to_velodyne') sub = rospy.Subscriber('/chuangxin/lidar_topic', PointCloud2, callback_function) pub = rospy.Publisher('/converted/velodyne_format', PointCloud2, queue_size=10) def callback_function(msg): transformed_cloud = convert_chuangxin_to_velodyne(msg) pub.publish(transformed_cloud) rospy.spin() except Exception as e: print(e) # 辅助函数:解析来自镭神LIDAR的主题消息中的原始点信息 def read_points_from_chuangxin_msg(cloud_msg): data_buffer = cloud_msg.data point_step = sum([struct.calcsize(f.datatype) * f.count for f in cloud_msg.fields]) row_step = point_step * cloud_msg.width raw_points = [] offset = 0 while offset < len(data_buffer): x = struct.unpack_from('<f', buffer=data_buffer, offset=offset)[0] y = struct.unpack_from('<f', buffer=data_buffer, offset=(offset + 4))[0] z = struct.unpack_from('<f', buffer=data_buffer, offset=(offset + 8))[0] intensity = struct.unpack_from('<I', buffer=data_buffer, offset=(offset + 12))[0] raw_points.append((x,y,z,intensity)) offset += point_step return np.array(raw_points).reshape(-1, 4) ``` 这段代码展示了如何订阅来自镭神激光雷达的话题并将接收到的点云数据按照Velodyne格式打包后再发布出去的过程。需要注意的是,这里假设了某些关于镭神激光雷达输出的具体细节;对于不同的型号或是配置版本,具体的实现细节会有所变化,所以建议参照官方API指南做适当修改[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值