普通双样本孟德尔随机化难发,但这是高级孟德尔随机化SCI文章的核心

本文介绍了孟德尔随机化在医学研究中的重要性,尤其强调了两样本孟德尔随机化的基础。讲解了基本步骤,如数据准备、分析方法(如MREgger等)和多样化变体。同时,郑老师的课程将教授如何撰写相关SCI论文,包括初级班和高级班,以及提供的统计培训和服务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎参加郑老师2023年孟德尔随机化课程即将开始

发表文章后退款!郑老师科研统计课程详情

在过去的几年里,孟德尔随机化 (MR) 方法在临床医学研究领域、生物信息学领域进展飞快,发文量越来越多。经常可以听到,孟德尔随机化越来越难以发表。

实际上并不是发不了,只是没有找到好的主题以及好的方法。

目前仅一个X、一个Y的简单两样本的孟德尔随机化,的确越来越难。

两样本孟德尔随机化很重要,非常非常重要;所有高级的孟德尔随机化的文章其核心思想就是两样本孟德尔随机化。

为什么这么说呢!

其实所有的孟德尔随机化流程都是差不多的,都是一个样本用于找暴露与snp关系另一个样本是找snp与结局的关系

01

读取暴露因素的GWAS数据。

02

选取合适的工具

通常设置为P< 5×10-8,必要时进行clumping。

03

读取结局变量的GWAS数据

提取上述工具变量的SNP(变异频率大于1%的单核苷酸变异)。

04

数据预处理

对暴露因素与结局的GWAS数据进行预处理,使其格式统一化。

05

MR分析SNPs与结局的关系

默认使用五种方法为MR Egger,Weighted median,Inverse variance weighted,Simple mode ,Weighted mode,多用效应值(β)或者风险值(OR)表示。

06

分析结果可视化

包括散点图、森林图和漏斗图等,散点图斜率代表暴露因素对结局的影响大小(causal effect)。

不管是哪种孟德尔随机化,都是在两样本的基本上加一些东西而已。

多样本孟德尔随机化:多一些暴露因素

中介孟德尔随机化:和普通中介类似,就是多个两样本合在一起。

双向孟德尔随机化:X到Y,Y到X,角色互换;做两个双样本孟德尔随机化

药物靶标孟德尔随机化:读取的暴露因素与普通两样本不一样

肠道菌群孟德尔随机化:以肠道菌群作为暴露因素分析,其他与两样本无样。

所以,饭要一口一口的吃,学好最最基本的两样本孟德尔随机化,才能真正敲开孟德尔随机化SCI大门。

我们将召开孟德尔随机化方法初级班、高级班的课程,欢迎各位参加

2023年“孟德尔随机化方法快速撰写SCI论文” 直播课,11.18-11.19.

本公众提供各种科研服务了!

一、课程培训

2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10门课。如果您有需求,不妨点击查看:

发表文章后退款!2023年郑老师团队多门科研统计直播课程,欢迎报名

二、统计服务

为团队发展,我们将与各位朋友合作共赢,本团队将开展统计分析服务,帮忙进行临床科研。欢迎了解详情:

医学统计服务| 医公共数据库论文一对一指导

单样本孟德尔随机化(Single-Sample Mendelian Randomization, SS MR)是一种遗传统计方法,用于研究一个暴露因素(如某种生物标志物水平)与疾病风险之间的潜在因果关系。该方法利用个体基因型作为工具变量,来估计暴露因素对结果变量(如疾病状态)的因果效应。在这种方法中,通常需要至少一个遗传变异(SNP)与暴露因素强烈相关,但与结果变量之间没有直接的生物学联系。 单样本孟德尔随机化的代码实现通常涉及以下步骤: 1. 数据准备:收集个体的基因型数据、暴露因素测量值和可能的协变量信息。 2. 工具变量选择:筛选与暴露因素相关的SNP,进行基因型与暴露因素的相关性分析。 3. 回归分析:利用线性回归或逻辑回归模型,以工具变量作为预测变量,暴露因素作为因变量进行回归分析,从而估计暴露因素与结果变量之间的关系。 4. 因果推断:根据工具变量回归分析的结果推断暴露因素对结果变量的因果效应。 实现单样本孟德尔随机化分析可能需要使用统计软件或编程语言,如R或Python,并可能用到专门的统计包或库,例如在R中的`TwoSampleMR`或者`MendelianRandomization`包。 以下是一个简化的R语言伪代码示例,说明如何使用单样本孟德尔随机化分析的步骤: ```r # 安装和加载必要的包 install.packages("MendelianRandomization") library(MendelianRandomization) # 假设已有数据集包含以下列:SNP, Expose, Outcome data <- read.csv("data.csv") # 选择工具变量 instrumental_variables <- select_ivs(data, snp_column = "SNP", exposure_column = "Expose") # 进行单样本孟德尔随机化分析 mr_results <- mr(ivs = instrumental_variables, exposure = "Expose", outcome = "Outcome") # 输出结果 print(mr_results) ``` 需要注意的是,上述代码仅为说明性质,并非真实的可执行代码。实际操作时需要根据数据格式和分析需求编写具体的代码,并且确保数据的质量和分析方法的适用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值