发散与反常积分

发散的反常积分是指积分区间无界或者被积函数在积分区间内无界,且积分值不是一个有限实数的积分。 它与收敛的反常积分相对,后者积分值是一个有限实数。 发散反常积分的结果通常表示为 ∞, -∞ 或不存在。

让我们分别讨论积分区间无界和被积函数无界的情况:

一、积分区间无界

这种情况下,积分区间至少有一个端点是无穷大或无穷小。 常见的形式包括:

  • 无穷区间: ∫ a ∞ f ( x ) d x \int_a^\infty f(x) dx af(x)dx ∫ − ∞ a f ( x ) d x \int_{-\infty}^a f(x) dx af(x)dx ∫ − ∞ ∞ f ( x ) d x \int_{-\infty}^\infty f(x) dx f(x)dx

计算方法通常是将其转换为极限形式:

  • ∫ a ∞ f ( x ) d x = lim ⁡ t → ∞ ∫ a t f ( x ) d x \int_a^\infty f(x) dx = \lim_{t \to \infty} \int_a^t f(x) dx af(x)dx=tlimatf(x)dx
  • ∫ − ∞ a f ( x ) d x = lim ⁡ t → − ∞ ∫ t a f ( x ) d x \int_{-\infty}^a f(x) dx = \lim_{t \to -\infty} \int_t^a f(x) dx af(x)dx=tlimtaf(x)dx
  • ∫ − ∞ ∞ f ( x ) d x = lim ⁡ t → − ∞ ∫ t 0 f ( x ) d x + lim ⁡ s → ∞ ∫ 0 s f ( x ) d x \int_{-\infty}^\infty f(x) dx = \lim_{t \to -\infty} \int_t^0 f(x) dx + \lim_{s \to \infty} \int_0^s f(x) dx f(x)dx=tlimt0f(x)dx+slim0sf(x)dx (注意,此处需要分别计算两个极限,两者都必须存在且有限,才能说积分收敛)

如果上述极限不存在(等于 ∞, -∞ 或振荡),则积分发散。

例子:

  • ∫ 1 ∞ 1 x d x = lim ⁡ t → ∞ ∫ 1 t 1 x d x = lim ⁡ t → ∞ [ ln ⁡ ∣ x ∣ ] 1 t = lim ⁡ t → ∞ ( ln ⁡ t − ln ⁡ 1 ) = ∞ \int_1^\infty \frac{1}{x} dx = \lim_{t \to \infty} \int_1^t \frac{1}{x} dx = \lim_{t \to \infty} [\ln|x|]_1^t = \lim_{t \to \infty} (\ln t - \ln 1) = \infty 1x1dx=tlim1tx1dx=tlim[lnx]1t=tlim(lntln1)= (发散)
  • ∫ 1 ∞ e − x d x = lim ⁡ t → ∞ ∫ 1 t e − x d x = lim ⁡ t → ∞ [ − e − x ] 1 t = lim ⁡ t → ∞ ( − e − t + e − 1 ) = e − 1 \int_1^\infty e^{-x} dx = \lim_{t \to \infty} \int_1^t e^{-x} dx = \lim_{t \to \infty} [-e^{-x}]_1^t = \lim_{t \to \infty} (-e^{-t} + e^{-1}) = e^{-1} 1exdx=tlim1texdx=tlim[ex]1t=tlim(et+e1)=e1 (收敛)

二、被积函数无界

这种情况下,被积函数在积分区间内至少存在一个点使其趋于无穷大。 常见的形式包括:

  • 积分区间有限,被积函数在区间端点无界: ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 其中 f ( x ) f(x) f(x) x = a x=a x=a x = b x=b x=b 处趋于无穷大。

计算方法是将其转换为极限形式:

  • 如果 f ( x ) f(x) f(x) x = a x=a x=a 处无界: ∫ a b f ( x ) d x = lim ⁡ t → a + ∫ t b f ( x ) d x \int_a^b f(x) dx = \lim_{t \to a^+} \int_t^b f(x) dx abf(x)dx=ta+limtbf(x)dx
  • 如果 f ( x ) f(x) f(x) x = b x=b x=b 处无界: ∫ a b f ( x ) d x = lim ⁡ t → b − ∫ a t f ( x ) d x \int_a^b f(x) dx = \lim_{t \to b^-} \int_a^t f(x) dx abf(x)dx=tblimatf(x)dx
  • 如果 f ( x ) f(x) f(x) 在区间内一点 c c c ( a < c < b a < c < b a<c<b) 处无界: ∫ a b f ( x ) d x = lim ⁡ t → c − ∫ a t f ( x ) d x + lim ⁡ s → c + ∫ s b f ( x ) d x \int_a^b f(x) dx = \lim_{t \to c^-} \int_a^t f(x) dx + \lim_{s \to c^+} \int_s^b f(x) dx abf(x)dx=tclimatf(x)dx+sc+limsbf(x)dx (两者都必须存在且有限,积分才收敛)

例子:

  • ∫ 0 1 1 x d x = lim ⁡ t → 0 + ∫ t 1 1 x d x = lim ⁡ t → 0 + [ ln ⁡ ∣ x ∣ ] t 1 = lim ⁡ t → 0 + ( − ln ⁡ t ) = ∞ \int_0^1 \frac{1}{x} dx = \lim_{t \to 0^+} \int_t^1 \frac{1}{x} dx = \lim_{t \to 0^+} [\ln|x|]_t^1 = \lim_{t \to 0^+} (-\ln t) = \infty 01x1dx=t0+limt1x1dx=t0+lim[lnx]t1=t0+lim(lnt)= (发散)
  • ∫ 0 1 x d x = lim ⁡ t → 0 + ∫ t 1 x d x = lim ⁡ t → 0 + [ 2 3 x 3 / 2 ] t 1 = 2 3 \int_0^1 \sqrt{x} dx = \lim_{t \to 0^+} \int_t^1 \sqrt{x} dx = \lim_{t \to 0^+} \left[ \frac{2}{3} x^{3/2} \right]_t^1 = \frac{2}{3} 01x dx=t0+limt1x dx=t0+lim[32x3/2]t1=32 (收敛)

让我们用更具体的例子,更详细地解释发散的反常积分。我们将分别讨论积分区间无界和被积函数无界的情况,并提供更丰富的例子来说明发散的原因。

一、积分区间无界导致发散的例子:

  1. 简单的幂函数: ∫ 1 ∞ 1 x p d x \int_1^\infty \frac{1}{x^p} dx 1xp1dx

    • p ≤ 1 时,该积分发散。例如:

      • p = 1 (前面已讨论过): ∫ 1 ∞ 1 x d x = lim ⁡ t → ∞ ( ln ⁡ t ) = ∞ \int_1^\infty \frac{1}{x} dx = \lim_{t\to\infty} (\ln t) = \infty 1x1dx=tlim(lnt)=
      • p = 0.5 : ∫ 1 ∞ 1 x d x = lim ⁡ t → ∞ [ 2 x ] 1 t = lim ⁡ t → ∞ ( 2 t − 2 ) = ∞ \int_1^\infty \frac{1}{\sqrt{x}} dx = \lim_{t\to\infty} [2\sqrt{x}]_1^t = \lim_{t\to\infty} (2\sqrt{t} - 2) = \infty 1x 1dx=tlim[2x ]1t=tlim(2t 2)=
      • p = 0 : ∫ 1 ∞ 1 d x = lim ⁡ t → ∞ ( t − 1 ) = ∞ \int_1^\infty 1 dx = \lim_{t\to\infty} (t - 1) = \infty 11dx=tlim(t1)=
    • p > 1 时,该积分收敛。

  2. 指数函数: ∫ 0 ∞ e x d x \int_0^\infty e^x dx 0exdx

    这个积分发散,因为: ∫ 0 ∞ e x d x = lim ⁡ t → ∞ [ e x ] 0 t = lim ⁡ t → ∞ ( e t − 1 ) = ∞ \int_0^\infty e^x dx = \lim_{t\to\infty} [e^x]_0^t = \lim_{t\to\infty} (e^t - 1) = \infty 0exdx=tlim[ex]0t=tlim(et1)= 指数函数的增长速度太快,积分无法收敛到一个有限值。

  3. 振荡积分: ∫ 0 ∞ sin ⁡ x d x \int_0^\infty \sin x dx 0sinxdx

    这个积分发散,因为它不收敛到任何有限值。 虽然 sin ⁡ x \sin x sinx 在正负之间振荡,但振荡的幅度不减小,积分值不会趋于一个具体的数值。 这种发散属于“振荡发散”。

二、被积函数无界导致发散的例子:

  1. 简单的幂函数 (在积分区间端点无界): ∫ 0 1 1 x p d x \int_0^1 \frac{1}{x^p} dx 01xp1dx

    • p ≥ 1 时,该积分发散。例如:

      • p = 1 (前面已讨论过): ∫ 0 1 1 x d x = lim ⁡ t → 0 + ( − ln ⁡ t ) = ∞ \int_0^1 \frac{1}{x} dx = \lim_{t\to 0^+} (-\ln t) = \infty 01x1dx=t0+lim(lnt)=
      • p = 2 : ∫ 0 1 1 x 2 d x = lim ⁡ t → 0 + [ − 1 x ] t 1 = lim ⁡ t → 0 + ( − 1 + 1 t ) = ∞ \int_0^1 \frac{1}{x^2} dx = \lim_{t\to 0^+} \left[ -\frac{1}{x} \right]_t^1 = \lim_{t\to 0^+} \left( -1 + \frac{1}{t} \right) = \infty 01x21dx=t0+lim[x1]t1=t0+lim(1+t1)=
    • p < 1 时,该积分收敛。

  2. 对数函数: ∫ 0 1 ln ⁡ x d x \int_0^1 \ln x dx 01lnxdx

    这个积分发散,因为: ∫ 0 1 ln ⁡ x d x = lim ⁡ t → 0 + [ x ln ⁡ x − x ] t 1 = lim ⁡ t → 0 + ( − 1 − ( t ln ⁡ t − t ) ) = − 1 − 0 = − 1 \int_0^1 \ln x dx = \lim_{t\to 0^+} [x \ln x - x]_t^1 = \lim_{t\to 0^+} ( -1 - (t \ln t - t) ) = -1 - 0 = -1 01lnxdx=t0+lim[xlnxx]t1=t0+lim(1(tlntt))=10=1 注意,这个例子虽然极限存在且有限,但此处我们计算的是 ∫ 0 1 ln ⁡ x d x \int_0^1 \ln x dx 01lnxdx,被积函数 ln ⁡ x \ln x lnx x = 0 x=0 x=0 处趋于 − ∞ -\infty ,按照反常积分的定义,它需要先转化为极限形式才能判断收敛性,而它实际上收敛到-1,而不是发散。

  3. 在区间内部无界: 考虑函数 f ( x ) = 1 x − 1 f(x) = \frac{1}{x-1} f(x)=x11 在区间 [ 0 , 2 ] [0,2] [0,2] 上的积分。 函数在 x = 1 x=1 x=1 处无界。 这个积分发散,因为它需要分成两个部分: ∫ 0 1 1 x − 1 d x \int_0^1 \frac{1}{x-1} dx 01x11dx ∫ 1 2 1 x − 1 d x \int_1^2 \frac{1}{x-1} dx 12x11dx ,这两个积分都发散。

总结:

发散的反常积分的例子非常多,关键在于识别积分区间是否无界,或被积函数在积分区间内是否无界。 如果通过极限运算发现积分结果趋于无穷大、负无穷大或不趋于任何特定值(例如振荡),那么该积分就发散。 理解这些例子有助于更好地掌握发散反常积分的概念。 注意区分“发散”和“不收敛”,两者含义略有不同,发散是“不收敛”中的一种情况。 一个积分可能不收敛,但它可能并非发散,例如,它可能在极限中振荡。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值