使用YALMIP定义LMI,SEDUMI求解矩阵方程

YALMIP是一个MATLAB工具箱,用于建模和求解优化问题。通过YALMIP可以使用多种优化算法求解凸优化问题,其中包括线性矩阵不等式(LMI)实例。 LMI是一种常用的数学工具,用于描述一些特定的线性不等式约束。在YALMIP中,我们可以通过定义变量和约束条件来建立一个LMI实例,并通过YALMIP提供的优化算法求解该实例。 首先,我们在MATLAB中安装好YALMIP工具箱,并将所需的算法包(如SDPT3、SEDUMI等)添加到路径中。然后,我们可以使用YALMIP提供的函数创建一个LMI实例。 假设我们要求解LMI实例如下所示: 对于一个对称矩阵X: X > 0 A*X + X*A' < 0 其中,A是一个已知矩阵,我们要找到满足上述不等式的矩阵X。我们可以使用YALMIP定义变量和约束条件的函数来建立这个问题。 首先,我们使用sdpvar函数定义变量X,然后使用constraint函数添加约束条件。具体代码如下: X = sdpvar(n,n,'symmetric'); Constraints = [X > 0, A*X + X*A' < 0]; 然后,我们使用optimize函数对这个LMI实例进行求解,并获取结果。 status = optimize(Constraints, objective); 其中,objective是一个可选的目标函数,但在LMI问题中一般不需要。最后,我们可以使用value函数获得求解结果,并进行后续处理。 if status == 0 X_solution = value(X); else disp('Optimization failed!'); end 上述代码片段中,X_solution是我们求解得到的矩阵X的值。值得注意的是,在代码中使用的n是矩阵X的维度。 以上就是使用YALMIP求解LMI实例的简要过程。通过利用YALMIP提供的丰富函数和优化算法,我们可以轻松地求解各种LMI问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值