RepVGG的代码仓库:https://github.com/DingXiaoH/RepVGG
所需要的是RepVGGBlock的源代码,如下
def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1):
result = nn.Sequential()
result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups,
bias=False))
result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))
return result
class SEBlock(nn.Module):
def __init__(self, input_channels, internal_neurons):
super(SEBlock, self).__init__()
self.down = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1,
bias=True)
self.up = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1,
bias=True)
self.input_channels = input_channels
def forward(self, inputs):
x = F.avg_pool2d(inputs, kernel_size=inputs.size(3))
x = self.down(x)
x = F.relu(x)
x = self.up(x)
x = torch.sigmoid(x)
x = x.view(-1, self.input_channels, 1, 1)
return inputs * x
class RepVGGBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3,
stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False):
super(RepVGGBlock, self).__init__()
self.deploy = deploy
self.groups = groups
self.in_channels = in_channels
padding_11 = padding - kernel_size // 2
self.nonlinearity = nn.SiLU()
# self.nonlinearity = nn.ReLU()
if use_se:
self.se = SEBlock(out_channels, internal_neurons=out_channels // 16)
else:
self.se = nn.Identity()
if deploy:
self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride,
padding=padding, dilation=dilation, groups=groups, bias=True,
padding_mode=padding_mode)
else:
self.rbr_identity = nn.BatchNorm2d(
num_features=in_channels) if out_channels == in_channels and stride == 1 else None
self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, groups=groups)
self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,
padding=padding_11, groups=groups)
def get_equivalent_kernel_bias(self):
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
if kernel1x1 is None:
return 0
else:
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
def _fuse_bn_tensor(self, branch):
if branch is None:
return 0, 0
if isinstance(branch, nn.Sequential):
kernel = branch.conv.weight
running_mean = branch.bn.running_mean
running_var = branch.bn.running_var
gamma = branch.bn.weight
beta = branch.bn.bias
eps = branch.bn.eps
else:
assert isinstance(branch, nn.BatchNorm2d)
if not hasattr(self, 'id_tensor'):
input_dim = self.in_channels // self.groups
kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
for i in range(self.in_channels):
kernel_value[i, i % input_dim, 1, 1] = 1
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
kernel = self.id_tensor
running_mean = branch.running_mean
running_var = branch.running_var
gamma = branch.weight
beta = branch.bias
eps = branch.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
def forward(self, inputs):
if hasattr(self, 'rbr_reparam'):
return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
if self.rbr_identity is None:
id_out = 0
else:
id_out = self.rbr_identity(inputs)
return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out))
def fusevggforward(self, x):
return self.nonlinearity(self.rbr_dense(x))
将以上代码复制至ultralytics/nn/modules/block.py的最后,并在block.py最前端的__all__中加入
"RepVGGBlock",加入后如下图
__all__ = (
"DFL",
"HGBlock",
"HGStem",
"SPP",
"SPPF",
"C1",
"C2",
"C3",
"C2f",
"C2fAttn",
"ImagePoolingAttn",
"ContrastiveHead",
"BNContrastiveHead",
"C3x",
"C3TR",
"C3Ghost",
"GhostBottleneck",
"Bottleneck",
"BottleneckCSP",
"Proto",
"RepC3",
"ResNetLayer",
"RepNCSPELAN4",
"ELAN1",
"ADown",
"AConv",
"SPPELAN",
"CBFuse",
"CBLinear",
"RepVGGDW",
"CIB",
"C2fCIB",
"Attention",
"PSA",
"SCDown",
"RepVGGBlock",
)
另外还需修改ultralytics/nn/modules/__init__.py以及ultralytics/nn/tasks.py
首先修改ultralytics/nn/modules/__init__.py,在from .block import以及__all__中加入RepVGGBlock,更改后如下
from .block import (
C1,
C2,
C3,
C3TR,
CIB,
DFL,
ELAN1,
PSA,
SPP,
SPPELAN,
SPPF,
AConv,
ADown,
Attention,
BNContrastiveHead,
Bottleneck,
BottleneckCSP,
C2f,
C2fAttn,
C2fCIB,
C3Ghost,
C3x,
CBFuse,
CBLinear,
ContrastiveHead,
GhostBottleneck,
HGBlock,
HGStem,
ImagePoolingAttn,
Proto,
RepC3,
RepNCSPELAN4,
RepVGGDW,
ResNetLayer,
SCDown,
RepVGGBlock,
)
__all__ = (
"Conv",
"Conv2",
"LightConv",
"RepConv",
"DWConv",
"DWConvTranspose2d",
"ConvTranspose",
"Focus",
"GhostConv",
"ChannelAttention",
"SpatialAttention",
"CBAM",
"Concat",
"TransformerLayer",
"TransformerBlock",
"MLPBlock",
"LayerNorm2d",
"DFL",
"HGBlock",
"HGStem",
"SPP",
"SPPF",
"C1",
"C2",
"C3",
"C2f",
"C2fAttn",
"C3x",
"C3TR",
"C3Ghost",
"GhostBottleneck",
"Bottleneck",
"BottleneckCSP",
"Proto",
"Detect",
"Segment",
"Pose",
"Classify",
"TransformerEncoderLayer",
"RepC3",
"RTDETRDecoder",
"AIFI",
"DeformableTransformerDecoder",
"DeformableTransformerDecoderLayer",
"MSDeformAttn",
"MLP",
"ResNetLayer",
"OBB",
"WorldDetect",
"v10Detect",
"ImagePoolingAttn",
"ContrastiveHead",
"BNContrastiveHead",
"RepNCSPELAN4",
"ADown",
"SPPELAN",
"CBFuse",
"CBLinear",
"AConv",
"ELAN1",
"RepVGGDW",
"CIB",
"C2fCIB",
"Attention",
"PSA",
"SCDown",
"RepVGGBlock",
)
再更改tasks.py,同样的,在from ultralytics.nn.modules import中加入RepVGGBlock,更改后如下
from ultralytics.nn.modules import (
AIFI,
C1,
C2,
C3,
C3TR,
ELAN1,
OBB,
PSA,
SPP,
SPPELAN,
SPPF,
AConv,
ADown,
Bottleneck,
BottleneckCSP,
C2f,
C2fAttn,
C2fCIB,
C3Ghost,
C3x,
CBFuse,
CBLinear,
Classify,
Concat,
Conv,
Conv2,
ConvTranspose,
Detect,
DWConv,
DWConvTranspose2d,
Focus,
GhostBottleneck,
GhostConv,
HGBlock,
HGStem,
ImagePoolingAttn,
Pose,
RepC3,
RepConv,
RepNCSPELAN4,
RepVGGDW,
ResNetLayer,
RTDETRDecoder,
SCDown,
Segment,
WorldDetect,
v10Detect,
RepVGGBlock,
)
并在tasks.py的1019行后加入以下代码
elif m is ResNetLayer:
c2 = args[1] if args[3] else args[1] * 4
##上面是原有的,只是做参考标定
elif m is {RepVGGBlock}:
c1, c2 = ch[f], args[0]
if c2 != nc:
c2 = make_divisible(min(c2, max_channels) * width, 8)
args = [c1, c2, *args[1:]]
然后新建文件.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, RepVGGBlock, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, RepVGGBlock, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, RepVGGBlock, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 7
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 11
- [-1, 1, Conv, [256, 1, 1]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
- [[-1, 12], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
- [[-1, 7], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
再写一个demo.py,在终端运行python demo.py即可
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
from ultralytics.models import RTDETR
import torch
if __name__=="__main__":
# Load a model
model_yaml='/root/ultralytics-new/ultralytics/cfg/models/rt-detr/rtdetr-RepVGGB1G2.yaml'
data_yaml='/root/ultralytics-old/coco.yaml'
pre_model='/root/ultralytics/runs/detect/train3/weights/last.pt'
model = RTDETR(model_yaml) # build from YAML and transfer weights
model.info()
# Train the model
results = model.train(data=data_yaml, epochs=72, imgsz=640,batch=8,workers=8)