摘要:
众所周知,通过设计考虑到客户存在不确定性的路线,可以降低包裹递送的成本。迄今为止,考虑客户随机性的路径问题都是基于所有客户之间彼此独立的假设。然而,研究表明人口统计因素对包裹递送效率具有影响,因此可以利用共享特征来映射客户存在之间的依赖关系。本文推广了考虑客户随机性的旅行推销员问题(也称为概率旅行推销员问题,PTSP),融合了客户之间相关性的概念,从而得到考虑客户随机性与相关性的推销员问题(CPTSP)。作者提出了一个使用 Copulas 的通用且灵活的CPTSP模型,该模型在高维设置中保持计算和数学上的可行性。并展示了现有精确和启发式框架的几种适应性,以有效解决CPTSP问题。
关键词:TSP问题、随机车辆路径规划、相关性
1. 引言
电子商务的激增导致B2C的快递包裹数量大幅增加。在履行在线订单时,“最后一英里”是递送过程中效率最低且最昂贵的阶段。物流承运商在这个阶段面临的最大挑战之一是由于客户不在家而导致的大量递送失败,这导致了大量额外的排放污染、服务水平的下降、收集和快递点费用以及重新递送的成本。Jaillet(1988)最早将客户在家的随机性融合进TSP问题,从而得到 probabilistic travelling salesman problem (PTSP)。本文基于相似人口统计特征的客户的行为模式可能会遵循相似的趋势的结论 (例如,同一社区的居民通常表现出相似的特征,同一年龄组的邻近客户与递送成功率具有强相关性),将PTSP推广到考虑客户之间相关性的版本即:correlated probabilistic travelling salesman problem (CPTSP) 问题。作者主要聚焦于以下三个问题:(1)如何建模CPTSP问题;(2)如何解决CPTSP问题;(3)在TSP问题中,客户的随机性与相关性对路线成本和路线决策的影响。
2. 模型描述
在CPTSP问题中,每位客户都有一定的概率在家,且与其他客户在家的概率相关联。因此,在此问题的实例中,只有部分顾客在家,其余顾客则是缺席的。只有在家的顾客需要访问,并且与TSP类似,每个需要访问的顾客应该仅被访问一次。此问题被建模为两阶段随机规划问题。在第一阶段,构建一个先验路径(a priori tour) τ \tau τ,该路径经过点集 N N N中的所有 n n n个客户。在第二阶段,该路径被优化为跳过缺席的客户,只经过在家的客户点集 S ⊆ N S \subseteq N S⊆N,其被访问顺序与先验路径中的一致,此结果得到的路径称为后验路径(a posteriori tour)。CPTSP的目标是在考虑到顾客在家的联合概率和它们间的依赖结构后,找到经过所有客户的先验路径 τ \tau τ,使其期望长度 E [ L ( τ ) ] \mathbb{E} [L(\tau)] E[L(τ)]最短。
该问题的模型如下所示:
min τ E [ L ( τ ) ] ( 1 ) \min_{\tau} \mathbb{E} [L(\tau)]\qquad(1) τminE[L(τ)](1)
s.t. ∑ i < j x i j + ∑ j < i x i j = 2 , ( 2 ) \text{s.t.} \quad \sum_{i < j}x_{ij}+\sum_{j < i}x_{ij}=2,\qquad(2) s.t.i<j∑xij+j<i∑xij=2,(2)
∑ i , j , ∈ S i < j x i j ≤ ∣ S ∣ − 1 , S ⊂ N ; 3 ≤ ∣ S ∣ ≤ n − 3 ( 3 ) \qquad \sum_{\substack{i,j,\in S\\ i < j}}x_{ij}\leq|S|-1, \quad S\subset N; 3\leq|S|\leq n-3\qquad(3) i,j,∈Si<j∑xij≤∣S∣−1,S⊂N;3≤∣S∣≤n−3(3)
x i j ∈ { 0 , 1 } , i , j ∈ N ( 4 ) \qquad x_{ij}\in \{0,1\},\quad i,j\in N \qquad (4) xij∈{0,1},i,j∈N(4)
这里
x
i
j
x_{ij}
xij为二元变量,表示边
(
i
,
j
)
(i,j)
(i,j)是否在路径$\tau
上。约束
(
2
)
确保每个点的入度和出度都为
1
,
(
3
)
为子环消除约束,
(
4
)
为整数变量约束。若
上。约束(2)确保每个点的入度和出度都为1,(3)为子环消除约束,(4)为整数变量约束。 若
上。约束(2)确保每个点的入度和出度都为1,(3)为子环消除约束,(4)为整数变量约束。若\mathbf{Y}=(Y_1,…,Y_n)
是一个伯努利随机变量向量,取值为
是一个伯努利随机变量向量,取值为
是一个伯努利随机变量向量,取值为y=(Y_1=y_1,…,Y_n=y_n)
。如果顾客在家且需要拜访,则
。如果顾客在家且需要拜访,则
。如果顾客在家且需要拜访,则Y_i=1
;否则
;否则
;否则Y_i=0
。给定概率质量函数(
p
m
f
)
。给定概率质量函数(pmf)
。给定概率质量函数(pmf)p(\textbf{y}_{ij})=Pr(Y_i = y_i,…,Y_j = y_j)$,则目标函数可表示为
E
[
L
(
τ
)
]
=
∑
i
=
1
n
−
1
∑
j
=
i
+
1
n
d
i
j
p
(
y
i
j
∗
)
+
∑
j
=
2
n
∑
i
=
1
j
−
1
d
j
i
p
(
y
j
i
∗
)
(
5
)
\mathbb{E} [L(\tau)]= \sum_{i=1}^{n-1}\sum_{j=i+1}^nd_{ij}p(\textbf{y}_{ij}^*)+\sum_{j=2}^{n}\sum_{i=1}^{j-1}d_{ji}p(\textbf{y}_{ji}^*)\quad(5)
E[L(τ)]=i=1∑n−1j=i+1∑ndijp(yij∗)+j=2∑ni=1∑j−1djip(yji∗)(5)
这里
d
i
j
d_{ij}
dij为客户
i
i
i与
j
j
j间的距离。此式中的联合概率质量函数
p
(
y
)
p(y)
p(y)应具有以下性质:(i) 可重复性;(ii) 理想情况下从客户存在性的伯努利分布中取边缘概率作为输入;(iii) 在各客户之间独立的情况下应当简化为与PTSP中的pmf;(iv) 可以在不需要牺牲估计精度的条件下扩展到更高维度。在本文中作者运用Copulas来解决此问题。
若随机变量向量
Y
i
j
\textbf{Y}_{ij}
Yij 边缘累积分布函数
F
r
(
y
r
)
=
P
r
(
Y
r
≤
y
r
)
F_r(y_r)=Pr(Y_r\leq y_r)
Fr(yr)=Pr(Yr≤yr)服从伯努利分布,即
F
r
(
y
r
)
=
{
0
if
y
r
<
0
1
−
p
r
if
0
≤
y
r
≤
1
1
if
y
r
≥
1
(
6
)
F_r(y_r)=\begin{cases} 0& \text{if } y_r < 0 \\ 1-p_r & \text{if } 0\leq y_r\leq 1 \\ 1 & \text{if } y_r\geq1 \end{cases} \qquad (6)
Fr(yr)=⎩
⎨
⎧01−pr1if yr<0if 0≤yr≤1if yr≥1(6)
将概率积分变换应用于每个
Y
r
∈
Y
i
j
Y_r\in \textbf{Y}_{ij}
Yr∈Yij可以得到随机向量
U
r
=
F
r
(
Y
r
)
U_r = F_r(Y_r)
Ur=Fr(Yr),其边缘分布为均分布
u
r
∼
U
r
(
0
,
1
)
u_r \sim U_r(0,1)
ur∼Ur(0,1)。Sklar (1959) 的定理指出,每一个多变量累积分布函数 cumulative density function (cdf) 都可以用其边缘概率和一个 copula 函数来表示,即可得到
C
(
u
i
,
.
.
.
,
u
j
)
=
P
r
(
Y
i
≤
F
−
1
(
u
i
)
,
.
.
.
,
Y
j
≤
F
−
1
(
u
j
)
)
C(u_i,...,u_j)=Pr(Y_i\leq F^{-1}(u_i),...,Y_j\leq F^{-1}(u_j))
C(ui,...,uj)=Pr(Yi≤F−1(ui),...,Yj≤F−1(uj))
为了避免重复计算高维积分,作者将
p
(
y
i
j
∗
)
p(\textbf{y}_{ij}^*)
p(yij∗)分解为一系列较小的条件概率,即
p
(
y
i
j
∗
)
=
P
r
(
Y
i
=
1
∣
Y
i
+
1
=
0
,
.
.
.
,
Y
j
−
1
=
0
,
Y
j
=
1
)
×
P
r
(
Y
j
=
1
∣
Y
i
+
1
=
0
,
.
.
.
,
Y
j
−
1
=
0
)
×
∏
r
=
i
+
1
j
−
2
P
r
(
Y
r
=
0
∣
Y
i
+
1
=
0
,
.
.
.
,
Y
j
−
1
=
0
)
×
P
r
(
Y
j
−
1
=
0
)
(
7
)
p(\textbf{y}_{ij}^*)=Pr(Y_i=1|Y_{i+1}=0,...,Y_{j-1}=0,Y_j=1)\times Pr(Y_j=1|Y_{i+1}=0,...,Y_{j-1}=0) \times \prod_{r=i+1}^{j-2}Pr(Y_r=0|Y_{i+1}=0,...,Y_{j-1}=0)\times Pr(Y_{j-1}=0) \qquad (7)
p(yij∗)=Pr(Yi=1∣Yi+1=0,...,Yj−1=0,Yj=1)×Pr(Yj=1∣Yi+1=0,...,Yj−1=0)×r=i+1∏j−2Pr(Yr=0∣Yi+1=0,...,Yj−1=0)×Pr(Yj−1=0)(7)
右侧结构实际上是通过反复应用贝叶斯定理得到的结果,被称为 D-vine。前两个项对应于在路径
(
i
,
.
.
.
,
j
)
(i,...,j)
(i,...,j)两端的z在家客户的条件概率,而最后两个项对应于路径中每个缺席客户的概率,其可以通过成对的Pair Copula Constructions (PCC)来构造计算。
3. CPTSP问题的精确算法
在本文中,作者介绍了一种整数L形方法来解决CPTSP问题。它本质上是一种分枝切割算法的随机变体,旨在求解两阶段随机混合整数优化使其达到最优,具体步骤如下:
- 步骤1. 将当前迭代次数索引设为$\nu:=0 $ ,并将迄今为止找到的最优目标值设为 z ˉ = ∞ \bar{z}=\infty zˉ=∞。子问题列表为 min x ν , θ ν ∑ i = 1 n − 1 ∑ j = i + 1 n d i j x i j ν + θ ν \min_{x^\nu,\theta^\nu}\sum_{i=1}^{n-1}\sum_{j=i+1}^nd_{ij}x_{ij}^{\nu}+\theta^{\nu} minxν,θν∑i=1n−1∑j=i+1ndijxijν+θν, s.t. (2), 0 ≤ x i j ν ≤ 1 , θ ν ≥ L 0 \leq x_{ij}^\nu \leq 1, \theta^\nu \geq L 0≤xijν≤1,θν≥L。距离减少的近似值 θ ν \theta^\nu θν 可以通过求解 Laporte(1994) 中的辅助混合整数规划中得到。
- 步骤2. 从列表中选择一个子问题。如果不存在,则停止。
- 步骤3. 更新 ν : = ν + 1 \nu := \nu + 1 ν:=ν+1。求解第 ν \nu ν个子问题,并将其最优解记为 ( x ν , θ ν ) (x^\nu, \theta^\nu) (xν,θν)。
- 步骤4. 如果 ∑ i = 1 n − 1 ∑ j = i + 1 n d i j x i j ν + θ ν ≥ z \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} d_{ij} x_{ij}^\nu + \theta^\nu \geq z ∑i=1n−1∑j=i+1ndijxijν+θν≥z ,则舍弃当前问题并返回步骤2。
- 步骤5. 检查是否违反了子环消除约束 (3)。如果可以识别出子环,则相应地用子环消除约束扩充问题,并返回步骤3。
- 步骤6. 检查 x ν x^\nu xν是否为整数。如果整数约束 (4) 被违反,选择最分数化的变量。通过分支选定的变量创建两个新子问题,并将这些子问题添加到列表中。然后,返回步骤2。
- 步骤7. 使用 (5) 计算当前解 x ν x^\nu xν的期望长度 z ν : = E [ L ( τ ) ] z^\nu := E[L(\tau)] zν:=E[L(τ)],如果 z ν < z ˉ z^\nu <\bar{z} zν<zˉ ,则 z ˉ : = z ν \bar{z} := z^\nu zˉ:=zν 。
- 步骤8. 使用 (13) 计算真实的recourse costs的期望 Q ( x ν ) Q(x^\nu) Q(xν)。 Q ( x ν ) Q(x^\nu) Q(xν)指的是对于任意给定的先验路径,其后验路径中跳过客户所导致的距离减少量。如果 θ ν ≥ Q ( x ν ) \theta^\nu \geq Q(x^\nu) θν≥Q(xν),则舍弃当前子问题并返回步骤2。
- 步骤9. 施加最优性切割(Laporte 1994): θ ≥ 1 / 2 ( Q ( x v ) − L ) ( ∑ ( i , j ) ∈ E v x i j − n ) + Q ( x v ) \theta\geq1/2(Q(x^v)-L)(\sum_{_{(i,j)\in E^v}}x_{ij}-n)+Q(x^v) θ≥1/2(Q(xv)−L)(∑(i,j)∈Evxij−n)+Q(xv),其中 E ν = { ( i , j ) ∈ E : x i j ν = 1 } E^\nu = \{(i, j) \in E : x^\nu_{ij} = 1\} Eν={(i,j)∈E:xijν=1},返回步骤 3。
4. CPTSP问题的启发式算法
对先验路径的近似模拟
减少CPTSP中期望路径长度计算复杂度的第一种方法是直接针对长度表达式(5),通过松弛目标函数中客户的随机项和依赖项来减少计算。
随机项对期望长度的贡献由先验路径上任何两个连续存在的客户之间的加权距离项形成。随着先验客户序列中两个存在客户之间的中间缺席客户数量增加,相关的概率
p
(
y
i
j
∗
)
p(y^*_{ij})
p(yij∗) 趋于下降,直至最终变得可以忽略不计。因此,仅考虑那些满足某个预定义的截断级别
κ
\kappa
κ下的情况可大幅减少计算量。在广义PTSP上的计算实验表明,截断级别仅为
κ
=
4
\kappa =4
κ=4时即可实现目标函数的准确近似。
依赖项对目标函数 (5) 的贡献由 D-Vine (7) 给出。积中的每个条件概率项
P
r
(
Y
a
=
y
a
∣
V
=
v
)
Pr(Y_a = y_a|\textbf{V}=\textbf{v})
Pr(Ya=ya∣V=v)类似于树结构,表示一项对另一项的依赖。当树的层级超过预定义的截断级别
λ
\lambda
λ时,若假设所有
∣
V
∣
>
λ
|V|>\lambda
∣V∣>λ的项为独立 copulas,对最终结果影响不大。有研究表明截断级别低至
λ
=
2
\lambda=2
λ=2即可实现准确的近似。
结合两种截断形式,目标函数 (1) 可以近似为:
E
[
L
(
τ
)
]
≈
∑
i
=
1
n
−
1
∑
j
=
i
+
1
min
{
i
+
κ
−
1
,
n
}
d
i
j
p
~
(
y
i
j
∗
)
+
∑
∗
∗
j
=
2
n
∑
i
=
max
{
1
,
j
−
κ
+
1
}
j
−
1
d
j
i
p
~
(
y
j
i
∗
)
(
8
)
E[L(\tau)] \approx \sum_{i=1}^{n-1} \sum_{j=i+1}^{\min\{i+\kappa-1,n\}} d_{ij} \tilde{p}(y^*_{ij}) + \sum*_*{j=2}^{n} \sum_{i=\max\{1,j-\kappa+1\}}^{j-1} d_{ji} \tilde{p}(y^*_{ji}) \qquad (8)
E[L(τ)]≈i=1∑n−1j=i+1∑min{i+κ−1,n}dijp~(yij∗)+∑∗∗j=2ni=max{1,j−κ+1}∑j−1djip~(yji∗)(8)
并假设所有
∣
V
∣
>
λ
|V|>\lambda
∣V∣>λ的项为独立 copulas。
期望长度的近似形式可以嵌入直接针对目标函数的方法中。蚁群系统 Ant-Colony Systems (ACS) 是一种灵活且具有竞争力的元启发式解决方法类,它依赖于目标函数的反复评估。ACS可以通过对其设计进行微调来处理各种问题。概率蚁群系统 (pACS) 元启发式是对 PTSP 的 ACS 适应的一个典型案例。将 pACS 启发式中的 PTSP 期望长度替换为 CPTSP 的精确目标函数 (1) 或其近似形式 (8),可以直接将 ACS 扩展到 CPTSP。对于 CPTSP,不需要对pACS 原始设置进行进一步修改。作者将这种元启发式称为相关概率蚁群系统 (cpACS) 元启发式。注意,cpACS 启发式是 pACS 启发式的广义化,因为在假设客户存在独立的情况下,它可简化为 pACS 启发式。
对后验路径的近似模拟
另一种减少 CPTSP 目标函数计算量的替代方法是从后验路径的角度来处理问题。也就是说,从后验路径中已实现的样本重构一个理想的先验路线,因为CPTSP问题的两阶段设置意味着先验和后延路径上的所有客户必须按相同的顺序访问,而样本可以通过直接对目标函数进行模拟或者从根据观察到的事实或已知的现实经验中得到。2.5-opt局部搜索框架的因其经验估计empirical estimation和加速speedup(EEs)特性成为解决PTSP的一种有效的算法。EEs涉及对客户实际情况样本中的“deltas”进行确定性评估,也即EEs可用作对样本的平均估计。其中每个“delta”指的是对先验路线中的拜访客户的顺序进行确定后所导致的后验路线长度的平均差异。每当“delta”评估表明对先验路线上客户顺序进行调整后(如通过一个 k-opt 移动)可以减少后验路线的平均长度时,该调整就被接受,通过此方法可避免反复评估计算成本高昂的 CPTSP 目标函数的需求。EEs 也可以应用于 CPTSP,例如可以通过从copula中模拟伯努利分布的客户的存在性与缺失性,从高斯copula中的采样过程可通过从多元正态累积分布中抽取样本,并使用(6)式的逆变换得到伯努利分布的结果,即
F
r
−
1
(
u
r
)
=
0
,
if
0
≤
u
r
≤
1
−
p
r
;
F
r
−
1
=
1
,
otherwise
F_r^{-1}(u_r)=0, \text{if } 0\leq u_r\leq 1-p_r; F_r^{-1}=1, \text{otherwise}
Fr−1(ur)=0,if 0≤ur≤1−pr;Fr−1=1,otherwise
5. 数值实验
不同程度的随机客户相关性对预期路线长度的影响
Figure 1. \text{Figure 1. } Figure 1. 显示了在客户间相互独立与客户相互关联情况下的路线预期长度比较,作者选用了kroA100、d198和rat783是三个实例来进行分析,每个实例的预期长度是在一组同质化概率 p = 0.1 , p = 0.5 , p = 0.9 p=0.1,p=0.5,p=0.9 p=0.1,p=0.5,p=0.9上计算的。
Figure 1. \text{Figure 1. } Figure 1. 的结果显示,更大的正相关性对相对预期长度的影响比更大的负相关性更大。相关性对预期长度的边际效应在尺度的负端逐渐消失,而正相关性的边际效应趋于增加。整体来看,测试后的路线预期长度与独立情况下的预期长度相比,偏差范围从-69.96%到+6.78%,平均差异为-6.82%。除此之外,客户在家的概率较低通常会导致预期路线长度更低,因为预期要访问的客户数量减少。类似的,客户之间较高的相关性会导致预期路线长度变短。
不同程度的随机客户相关性对算法性能的影响
作者随机生成分别包含10、20、30、50和100个节点的各10个不同的实例,每个实例都受到客户出现在家的概率和客户间依赖性的影响,其中低概率$p_i= 0.3 ,高概率 ,高概率 ,高概率p_i= 0.7 。低依赖性对应于 K e n d a l l 相关系数 。低依赖性对应于Kendall相关系数 。低依赖性对应于Kendall相关系数\tau = {0.3,0.2,0.1,0.05}, 高依赖性 高依赖性 高依赖性\tau = {0.7,0.4,0.3,0.2},$分别对应于树1、2、3、4。每种组合都在三种不同的copulas中测试,即Gaussian、Mardia-Takahasi-Cook-Johnson (MTCJ)/Clayton和Gumbel。
作者考虑了以下算法:(i). 整数L形方法中考虑的松弛子问题(ILSM)。(ii). 两种版本的cpACS算法,截断级别分别为 ( κ , λ ) = ( 8 , 3 ) (\kappa,\lambda)=(8,3) (κ,λ)=(8,3)为 ( κ , λ ) = ( 4 , 2 ) (\kappa,\lambda)=(4,2) (κ,λ)=(4,2),分别称为cpACS(8,3)和cpACS(4,2)。 (iii). 2.5-opt-EEs算法,使用1000个后验路径样本作为其输入,用于delta评估,并嵌入迭代局部搜索(ILS)过程,总共进行10次迭代,生成的ILS-2.5-opt-EEs-1000算法简称为ILS-EEs。
Figure 2. \text{Figure 2.} Figure 2.用箱形图,显示了每种算法找到的解决方案的期望长度与最佳解决方案best solution found(BSF)之间的差距。总的来说,不同算法在不同copula上的性能表现出相似的趋势。ILSM在大多数情况下能够在最大运行时间内产生BSF。然而值得注意的是,随着问题规模的增加,ILSM的计算时间急剧增加(见 Figure 3 \text{Figure 3} Figure 3)。
此外, Figure 2 \text{Figure 2 } Figure 2 和 Figure 3 \text{ Figure 3 } Figure 3 显示,两种cpACS实现的中位数数值与ILSM没有实质性差异,而cpACS实现所需的计算时间无论选择的截断级别以及概率和依赖性的设置如何,都显著较低。然而,cpACS(8,3)在方差方面的表现显著大于ILSM,并且异常值出现的频率更高。对于cpACS(4,2)来说,这种现象略有加剧。ILS-EEs在所有测试案例中表现出较弱的性能。
为了揭示路线决策的差异, Table 1. \text{Table 1. } Table 1. 显示了每种算法发现的先验路径中客户序列与BSF中客户序列的差异以及与独立Copula下得到的路线中拜访客户序列的差异。与BSF情况下相比,ILSM产生的路线差异在0.44%到8.69%之间。在低概率和低依赖性水平的组合下,路线与BSF的差异更大。当使用启发式方法时,路线序列的差异更加明显,两种cpACS实现的序列平均差异在3.28%到10.01%之间,而ILS-EEs的差异在16.11%到19.66%之间。除此之外,在表的右侧可以发现,无论算法、Copula或不确定性条件如何,得到的所有路线与在客户间相互独立的假设下得到的路线都有很大的不同。平均而言,忽略依赖性导致算法得到的结果差异为11.16%。值得一提的是,即使低水平的依赖性也可能对路线上拜访客户的顺序产生相当大的影响。
总结来说,考虑客户随机性与相关性会使得算法的性能提高。一方面,尽管ILSM与启发式方法在路线模拟方面只有边际改进,但得到的结果却可以有实质性的差异。另一方面,启发式所需的平均计算时间却大大低于ILSM。cpACS中更严格的截断水平不会对中位性能或计算时间产生很大影响,但对于方差的表现方面有显著提高。此外,基于1000个事后模拟的ILS-EEs算法的整体性能相对较弱。其嵌入的2.5-opt局部搜索算法可能不足以捕捉更远客户之间的交互性。此外,该算法在运行时间方面似乎不够竞争力,无法反复评估每个可能改进的候选移动,以获得代表性且可管理的相关后验路线结果样本。
6. 总结与展望
这篇论文介绍了考虑客户随机性与相关性的旅行商问题,这是一个新的随机组合优化问题,它关注的是在一组客户中找到一个事先确定的最小预期长度的路线,这些客户的出现是随机的并且相互关联的。CPTSP通过松弛与随机客户出现相关的随机变量独立分布的假设,推广了PTSP问题,作者提出了一种基于整数L形方法的精确算法。比较研究表明,路线的进一步微小改进可能导致路线决策的巨大差异。除此之外,作者还提出了两种基于先验路径和后验路径近似的启发式方法,这些方法可以在随机和依赖条件下获得良好的路线结果。CPTSP为未来的理论和实践实验创造了大量机会。例如优化CPTSP的界与其他理论属性,并配备特定Copula族的表达可以帮助进一步减轻目标函数的计算负担;其次,CPTSP的设置可以扩展,以增加其对工业应用的实际价值——例如,扩展具有时间窗口、多辆车和动态特性的案例研究设置。最后,实证结果表明,考虑随机客户出现的依赖性的模拟解决方案可产生经济效益,因此作者建议实践者明确考虑可以影响路线决策的客户的随机性与相关性。
参考文献:
[1] Jaillet P (1988) A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Oper. Res. 36(6):929–936.
[2] Sklar M (1959) Fonctions de répartition à n dimensions et leursmarges. Publ. Inst. Statist. Univ. Paris 8:229–231.
[3] Laporte G, Louveaux F, Mercure H (1994) A priori optimization of the probabilistic traveling salesman problem. Oper. Res. 42(3): 543–549.
[4] Pascal L. J. Wissink (2023) The Traveling Salesman Problem with Stochastic and Correlated Customers. Transportation Science 57(5):1321-1339.