【考研数学一·高数(4)】一元函数微分学

4.一元函数微分学

4.1.导数定义

f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0)=\lim\limits_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=\lim\limits_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} f(x0)=Δx0limΔxf(x0+Δx)f(x0)=xx0limxx0f(x)f(x0)

4.2.微分

4.2.1.微分的定义

设函数 y = f ( x ) 在点 x 的某邻域内有定义 , 若对应于自变量的增量 Δ x , 函数的增量 Δ y 可以表示为 Δ y = A Δ x + o ( Δ x ) , 其中 A 与 Δ x 无关 , 则称 y = f ( x ) 在点 x 处可微 , 并把 A Δ x 称为 y = f ( x ) 在点 x 处相应于自变量增量 Δ x 的微分 , 记作 d y 或 d [ f ( x ) ] ,即 d y = A Δ x . \begin{aligned} &设函数y=f(x)在点x的某邻域内有定义,若对应于自变量的增量\Delta x,函数的增量\Delta y可以表示为\Delta y=A\Delta x+o(\Delta x), \\&其中A与\Delta x无关,则称y=f(x)在点x处可微,并把A\Delta x称为y=f(x)在点x处相应于自变量增量\Delta x的微分, \\&记作\mathrm{d}y或\mathrm{d}[f(x)],即\mathrm{d}y=A\Delta x. \end{aligned} 设函数y=f(x)在点x的某邻域内有定义,若对应于自变量的增量Δx,函数的增量Δy可以表示为Δy=AΔx+o(Δx),其中AΔx无关,则称y=f(x)在点x处可微,并把AΔx称为y=f(x)在点x处相应于自变量增量Δx的微分,记作dyd[f(x)],即dy=AΔx.

4.2.2.可微的判别

  1. 写增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)

  2. 写线性增量 A Δ = f ′ ( x 0 ) Δ x A\Delta=f'(x_0)\Delta x AΔ=f(x0)Δx

  3. 作极限 lim ⁡ Δ x → 0 Δ y − A Δ x Δ x \lim\limits_{\Delta x\to0}\frac{\Delta y-A\Delta x}{\Delta x} Δx0limΔxΔyAΔx,若该极限等于 0 0 0,则 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处可微

4.2.3.可微的充要条件

f ( x ) 在 x 处可导,此时 A = f ′ ( x ) , 即 d y = f ′ ( x ) d x . f(x)在x处可导,此时A=f'(x),即\mathrm{d}y=f'(x)\mathrm{d}x. f(x)x处可导,此时A=f(x),dy=f(x)dx.

4.2.4.一阶微分形式的不变性

设 y = f ( u ) 可微 , 则微分 d y = f ′ ( u ) d u , 其中 u 不论是自变量还是中间变量,微分形式保持不变 . 设y=f(u)可微,则微分\mathrm{d}y=f'(u)\mathrm{d}u,其中u不论是自变量还是中间变量,微分形式保持不变. y=f(u)可微,则微分dy=f(u)du,其中u不论是自变量还是中间变量,微分形式保持不变.

4.2.5.易错点

  • 幂的微分: d ( x n ) = n x n − 1 d x \mathrm{d}(x^n)=nx^{n-1}\mathrm{d}x d(xn)=nxn1dx

  • 微分的幂: d x n = ( d x ) n \mathrm{d}x^n={(\mathrm{d}x)}^n dxn=(dx)n

4.3.基本求导公式

  1. ( x α ) ′ = α x α − 1 (x^\alpha)'=\alpha x^{\alpha-1} (xα)=αxα1

  2. ( a x ) ′ = a x ln ⁡ a (a^x)'=a^x\ln a (ax)=axlna

    ( e x ) ′ = e x (e^x)'=e^x (ex)=ex

  3. ( log ⁡ a x ) ′ = 1 x ln ⁡ a (\log_ax)'=\frac{1}{x\ln a} (logax)=xlna1

    ( ln ⁡ ∣ x ∣ ) ′ = 1 x (\ln|x|)'=\frac{1}{x} (lnx)=x1

  4. ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)'=\cos x (sinx)=cosx

    ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)'=-\sin x (cosx)=sinx

  5. ( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)'=\sec^2x (tanx)=sec2x

    ( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)'=-\csc^2x (cotx)=csc2x

  6. ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)'=\sec x\tan x (secx)=secxtanx

    ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)'=-\csc x\cot x (cscx)=cscxcotx

  7. ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1

    ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)'=-\frac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1

  8. ( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)'=\frac{1}{1+x^2} (arctanx)=1+x21

    ( a r c cot ⁡ x ) ′ = − 1 1 + x 2 (arc\cot x)'=-\frac{1}{1+x^2} (arccotx)=1+x21

  9. ( ln ⁡ ∣ cos ⁡ x ∣ ) ′ = − tan ⁡ x (\ln|\cos x|)'=-\tan x (lncosx)=tanx

    ( ln ⁡ ∣ sin ⁡ x ∣ ) ′ = cot ⁡ x (\ln|\sin x|)'=\cot x (lnsinx)=cotx

  10. ( ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ ) ′ = sec ⁡ x (\ln|\sec x+\tan x|)'=\sec x (lnsecx+tanx)=secx

    ( ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ ) = csc ⁡ x (\ln|\csc x-\cot x|)=\csc x (lncscxcotx)=cscx

  11. [ ln ⁡ ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 {[\ln(x+\sqrt{x^2+1})]'=\frac{1}{\sqrt{x^2+1}}} [ln(x+x2+1 )]=x2+1 1

    [ ln ⁡ ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 {[\ln(x+\sqrt{x^2-1})]'=\frac{1}{\sqrt{x^2-1}}} [ln(x+x21 )]=x21 1

    [ ln ⁡ ( x + x 2 + a 2 ) ] ′ = 1 x 2 + a 2 {[\ln(x+\sqrt{x^2+a^2})]'=\frac{1}{\sqrt{x^2+a^2}}} [ln(x+x2+a2 )]=x2+a2 1

4.4.反函数的导数

4.4.1.反函数的一阶导数

y = f ( x ) 可导且 f ′ ( x ) ≠ 0 , 则存在反函数 x = φ ( y ) , 且 d y d x = 1 d y d x , 即 φ ′ ( y ) = 1 f ′ ( x ) y=f(x)可导且f'(x)\ne 0,则存在反函数x=\varphi(y),且\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}},即\varphi'(y)=\frac{1}{f'(x)} y=f(x)可导且f(x)=0,则存在反函数x=φ(y),dxdy=dxdy1,φ(y)=f(x)1

4.4.2.反函数的二阶导数

记 f ′ ( x ) = y x ′ , φ ′ ( y ) = x y ′ ⇒ { y x ′ = d y d x = 1 d y d x = 1 x y ′ y x x ′ ′ = d 2 y d x 2 = d ( d y d x ) d x = d ( 1 x y ′ ) d x = d ( 1 x y ′ ) d x ⋅ 1 x y ′ = − x y y ′ ′ ( x y ′ ) 3 记f'(x)=y_x',\varphi'(y)=x_y'\Rightarrow\begin{cases}y_x'=\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}}=\frac{1}{x_y'}\\y_{xx}''=\frac{\mathrm{d}^2y}{\mathrm{d}x^2}=\frac{\mathrm{d}(\frac{\mathrm{d}y}{\mathrm{d}x})}{\mathrm{d}x}=\frac{\mathrm{d}(\frac{1}{x_y'})}{\mathrm{d}x}=\frac{\mathrm{d}(\frac{1}{x_y'})}{\mathrm{d}x}\cdot\frac{1}{x_y'}=\frac{-x_{yy}''}{{(x_y')}^3}\end{cases} f(x)=yx,φ(y)=xy yx=dxdy=dxdy1=xy1yxx′′=dx2d2y=dxd(dxdy)=dxd(xy1)=dxd(xy1)xy1=(xy)3xyy′′

4.5.参数方程所确定的函数求导

{ x = φ ( t ) y = ψ ( t ) ⇒ { d y d x = d y / d t d x / d t = ψ ′ ( t ) φ ′ ( t ) d 2 y d x 2 = d ( d y d x ) d x = d ( d y d x ) / d t d x / d t = ψ ′ ′ ( t ) φ ′ ( t ) − ψ ′ ( t ) φ ′ ′ ( t ) [ φ ′ ( t ) ] 3           ( φ ′ ( t ) ≠ 0 ) \begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}\Rightarrow\begin{cases}\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t}=\frac{\psi'(t)}{\varphi'(t)}\\\frac{\mathrm{d}^2y}{\mathrm{d}x^2}=\frac{\mathrm{d}(\frac{\mathrm{d}y}{\mathrm{d}x})}{\mathrm{d}x}=\frac{\mathrm{d}(\frac{\mathrm{d}y}{\mathrm{d}x})/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t}=\frac{\psi''(t)\varphi'(t)-\psi'(t)\varphi''(t)}{{[\varphi'(t)]}^3}\end{cases}~~~~~~~~~(\varphi'(t)\ne0) {x=φ(t)y=ψ(t) dxdy=dx/dtdy/dt=φ(t)ψ(t)dx2d2y=dxd(dxdy)=dx/dtd(dxdy)/dt=[φ(t)]3ψ′′(t)φ(t)ψ(t)φ′′(t)         (φ(t)=0)

4.6.变限积分求导公式

F ( x ) = ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t F ′ ( x ) = f [ φ 2 ( x ) ] φ 2 ′ ( x ) − f [ φ 1 ( x ) ] φ 1 ′ ( x ) \begin{aligned} &F(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}f(t)\mathrm{d}t \\&F'(x)=f[\varphi_2(x)]\varphi_2'(x)-f[\varphi_1(x)]\varphi_1'(x) \end{aligned} F(x)=φ1(x)φ2(x)f(t)dtF(x)=f[φ2(x)]φ2(x)f[φ1(x)]φ1(x)

4.7.高阶导数

4.7.1.常用高阶导数

  1. ( e a x + b ) ( n ) = a n e a x + b {(e^{ax+b})}^{(n)}=a^ne^{ax+b} (eax+b)(n)=aneax+b

  2. [ sin ⁡ ( a x + b ) ] ( n ) = a n sin ⁡ ( a x + b + n π 2 ) {[\sin(ax+b)]}^{(n)}=a^n\sin(ax+b+\frac{n\pi}{2}) [sin(ax+b)](n)=ansin(ax+b+2)

  3. [ cos ⁡ ( a x + b ) ] ( n ) = a n cos ⁡ ( a x + b + n π 2 ) {[\cos(ax+b)]}^{(n)}=a^n\cos(ax+b+\frac{n\pi}{2}) [cos(ax+b)](n)=ancos(ax+b+2)

  4. [ ln ⁡ ( a x + b ) ] ( n ) = ( − 1 ) n − 1 a n ( n − 1 ) ! ( a x + b ) n {[\ln(ax+b)]}^{(n)}={(-1)}^{n-1}a^n\frac{(n-1)!}{{(ax+b)}^n} [ln(ax+b)](n)=(1)n1an(ax+b)n(n1)!

  5. ( 1 a x + b ) ( n ) = ( − 1 ) n a n n ! ( a x + b ) n + 1 {(\frac{1}{ax+b})}^{(n)}={(-1)}^na^n\frac{n!}{{(ax+b)}^{n+1}} (ax+b1)(n)=(1)nan(ax+b)n+1n!

4.7.2.莱布尼茨公式

( u v ) ( n ) = u ( n ) v + C n 1 u ( n − 1 ) v ′ + C n 2 u ( n − 2 ) v ′ ′ + . . . + C n k u ( n − k ) v ( k ) + . . . + C n n − 1 u ′ v ( n − 1 ) + u v ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) {(uv)}^{(n)}=u^{(n)}v+C^1_nu^{(n-1)}v'+C^2_nu^{(n-2)}v''+...+C^k_nu^{(n-k)}v^{(k)}+...+C_n^{n-1}u'v^{(n-1)}+uv^{(n)}=\sum\limits_{k=0}^{n}C^k_nu^{(n-k)}v^{(k)} (uv)(n)=u(n)v+Cn1u(n1)v+Cn2u(n2)v′′+...+Cnku(nk)v(k)+...+Cnn1uv(n1)+uv(n)=k=0nCnku(nk)v(k)

4.7.3.泰勒展开式

y = f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n 或 y = f ( x ) = ∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n y=f(x)=\sum\limits_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n或y=f(x)=\sum\limits_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n y=f(x)=n=0n!f(n)(x0)(xx0)ny=f(x)=n=0n!f(n)(0)xn

4.8.几何应用

4.8.1.极值点判别

  1. 一阶可导点是极值点的必要条件(费马定理)

    f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0处可导,且在点 x 0 x_0 x0处取得极值,则必有 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

  2. 判别极值的第一充分条件

    f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0处连续,且在 x 0 x_0 x0的某去心邻域 U ∘ ( x 0 , δ ) \stackrel{\circ}{U}(x_0,\delta) U(x0,δ)内可导.

    ①若 x ∈ ( x 0 − δ , x 0 ) x\in(x_0-\delta,x_0) x(x0δ,x0)时, f ′ ( x ) < 0 f'(x)<0 f(x)<0,而 x ∈ ( x 0 , x 0 + δ ) x\in(x_0,x_0+\delta) x(x0,x0+δ)时, f ′ ( x ) > 0 f'(x)>0 f(x)>0,则 f ( x ) f(x) f(x) x 0 x_0 x0处取得极小值.

    ②若 x ∈ ( x 0 − δ , x 0 ) x\in(x_0-\delta,x_0) x(x0δ,x0)时, f ′ ( x ) > 0 f'(x)>0 f(x)>0,而 x ∈ ( x 0 , x 0 + δ ) x\in(x_0,x_0+\delta) x(x0,x0+δ)时, f ′ ( x ) < 0 f'(x)<0 f(x)<0,则 f ( x ) f(x) f(x) x 0 x_0 x0处取得极大值.

    ③若 f ′ ( x ) f'(x) f(x) ( x 0 − δ , x 0 ) (x_0-\delta,x_0) (x0δ,x0) ( x 0 , x 0 + δ ) (x_0,x_0+\delta) (x0,x0+δ)内不变号,则点 x 0 x_0 x0不是极值点.

  3. 判别极值的第二充分条件

    f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0处二阶可导,且 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0 f ′ ′ ( x 0 ) ≠ 0 f''(x_0)\ne0 f′′(x0)=0.

    ①若 f ′ ′ ( x 0 ) < 0 f''(x_0)<0 f′′(x0)<0,则 f ( x ) f(x) f(x) x 0 x_0 x0处取得极大值.

    ②若 f ′ ′ ( x 0 ) > 0 f''(x_0)>0 f′′(x0)>0,则 f ( x ) f(x) f(x) x 0 x_0 x0处取得极小值.

  4. 判别极值的第三充分条件

    f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0 n n n阶可导,且 f ( m ) ( x 0 ) = 0 ( m = 1 , 2 , . . . , n − 1 ) f^{(m)}(x_0)=0(m=1,2,...,n-1) f(m)(x0)=0(m=1,2,...,n1) f ( n ) ( x 0 ) ≠ 0 ( n ⩾ 2 ) f^{(n)}(x_0)\ne0(n\geqslant2) f(n)(x0)=0(n2).

    ①当 n n n为偶数且 f ( n ) ( x 0 ) < 0 f^{(n)}(x_0)<0 f(n)(x0)<0时, f ( x ) f(x) f(x) x 0 x_0 x0处取得极大值.

    ②当 n n n为偶数且 f ( n ) ( x 0 ) > 0 f^{(n)}(x_0)>0 f(n)(x0)>0时, f ( x ) f(x) f(x) x 0 x_0 x0处取得极小值.

4.8.2.拐点判别

  1. 拐点定义

    连续曲线的凹弧与凸弧的分界点.

  2. 二阶可导点是拐点的必要条件

    f ′ ′ ( x 0 ) f''(x_0) f′′(x0)存在,且点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为曲线上的拐点,则 f ′ ′ ( x 0 ) = 0 f''(x_0)=0 f′′(x0)=0.

    (只有两种情况, f ′ ′ ( x 0 ) = 0 f''(x_0)=0 f′′(x0)=0 f ′ ′ ( x 0 ) f''(x_0) f′′(x0)不存在)

  3. 判别拐点的第一充分条件

    f ( x ) f(x) f(x)在点 x = x 0 x=x_0 x=x0处连续,在点 x = x 0 x=x_0 x=x0的某去心邻域 U ∘ \stackrel{\circ}{U} U内二阶导数存在,且在该点的左右邻域内 f ′ ′ ( x ) f''(x) f′′(x)变号,则点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为曲线上的拐点.

  4. 判别拐点的第二充分条件

    设f(x)在 x = x 0 x=x_0 x=x0处三阶可导,且 f ′ ′ ( x 0 ) = 0 f''(x_0)=0 f′′(x0)=0 f ′ ′ ′ ( x 0 ) ≠ 0 f'''(x_0)\ne0 f′′′(x0)=0,则 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为曲线上的拐点.

  5. 判别拐点的第三充分条件

    f ( x ) f(x) f(x) x 0 x_0 x0 n n n阶可导,且 f ( m ) ( x 0 ) = 0 ( m = 2 , . . . , n − 1 ) f^{(m)}(x_0)=0(m=2,...,n-1) f(m)(x0)=0(m=2,...,n1) f ( n ) ( x 0 ) ≠ 0 ( n ⩾ 3 ) f^{(n)}(x_0)\ne0(n\geqslant3) f(n)(x0)=0(n3),则当 n n n为奇数时, ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为曲线上的拐点.

4.8.3.极值点与拐点的重要结论

  1. 曲线的可导点不同时为极值点和拐点,不可导点可同时为极值点和拐点.

  2. 设多项式函数 f ( x ) = ( x − a ) n g ( x ) ( n > 1 ) f(x)=(x-a)^ng(x)(n>1) f(x)=(xa)ng(x)(n>1),且 g ( a ) ≠ 0 g(a)\ne0 g(a)=0,则当 n n n为偶数时, x = a x=a x=a f ( x ) f(x) f(x)的极值点;当 n n n为奇数时,点 ( a , 0 ) (a,0) (a,0) f ( x ) f(x) f(x)的拐点.

  3. 设多项式函数 f ( x ) = ( x − a 1 ) n 1 ( x − a 2 ) n 2 . . . ( x − a k ) n k f(x)={(x-a_1)}^{n_1}{(x-a_2)}^{n_2}...{(x-a_k)}^{n_k} f(x)=(xa1)n1(xa2)n2...(xak)nk,其中 n i n_i ni是正整数, a i a_i ai是实数且两两不等.

    k 1 k_1 k1 n i = 1 n_i=1 ni=1的个数, k 2 k_2 k2 n i > 1 n_i>1 ni>1 n i n_i ni为偶数的个数, k 3 k_3 k3 n i > 1 n_i>1 ni>1 n i n_i ni为奇数的个数.

    极值点个数 = k 1 + 2 k 2 + k 3 − 1 =k_1+2k_2+k_3-1 =k1+2k2+k31,拐点个数 = k 1 + 2 k 2 + 3 k 3 − 2 =k_1+2k_2+3k_3-2 =k1+2k2+3k32.

4.8.4.渐近线

  1. 铅直渐近线

  2. 水平渐近线

  3. 斜渐近线

4.8.5.曲率公式

曲率 k = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 , 曲率半径 R = 1 k ( y ′ ′ ≠ 0 ) 曲率k=\frac{|y''|}{{[1+{(y')}^2]}^{\frac{3}{2}}}, 曲率半径R=\frac{1}{k}(y''\ne0) 曲率k=[1+(y)2]23y′′,曲率半径R=k1(y′′=0)

4.9.中值定理

4.9.1.定理

4.9.1.1.有界与最值定理

m ⩽ f ( x ) ⩽ M , 其中 m , M 分别为 f ( x ) 在 [ a , b ] 上的最小值与最大值 . m\leqslant f(x)\leqslant M,其中m,M分别为f(x)在[a,b]上的最小值与最大值. mf(x)M,其中m,M分别为f(x)[a,b]上的最小值与最大值.

4.9.1.2.介值定理

当 m ⩽ μ ⩽ M 时 , 存在 ξ ∈ [ a , b ] , 使得 f ( ξ ) = μ . 当m\leqslant\mu\leqslant M时,存在\xi\in[a,b],使得f(\xi)=\mu. mμM,存在ξ[a,b],使得f(ξ)=μ.

4.9.1.3.平均值定理

当 a < x 1 < x 2 < ⋯ < x n < b 时 , 在 [ x 1 , x n ] 上至少存在一点 ξ , 使得 f ( ξ ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) n . 当a<x_1<x_2<\cdots<x_n<b时,在[x_1,x_n]上至少存在一点\xi,使得f(\xi)=\frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n}. a<x1<x2<<xn<b,[x1,xn]上至少存在一点ξ,使得f(ξ)=nf(x1)+f(x2)++f(xn).

4.9.1.4.零点定理

当 f ( a ) ⋅ f ( b ) < 0 时 , 存在 ξ ∈ ( a , b ) , 使得 f ( ξ ) = 0. 当f(a)\cdot f(b)<0时,存在\xi\in(a,b),使得f(\xi)=0. f(a)f(b)<0,存在ξ(a,b),使得f(ξ)=0.

4.9.1.5.费马定理

设 f ( x ) 在点 x 0 处满足 { ①可导 , ②取极值 , 则 f ′ ( x 0 ) = 0. 设f(x)在点x_0处满足\begin{cases}①可导,\\②取极值,\end{cases}则f'(x_0)=0. f(x)在点x0处满足{可导,取极值,f(x0)=0.

4.9.1.6.罗尔定理

设 f ( x ) 满足 { ① [ a , b ] 上连续 , ② ( a , b ) 内可导 , ③ f ( a ) = f ( b ) , 则存在 ξ ∈ ( a , b ) , 使得 f ′ ( ξ ) = 0. 设f(x)满足\begin{cases}①[a,b]上连续,\\②(a,b)内可导,\\③f(a)=f(b),\end{cases}则存在\xi\in(a,b),使得f'(\xi)=0. f(x)满足 [a,b]上连续,(a,b)内可导,f(a)=f(b),则存在ξ(a,b),使得f(ξ)=0.

4.9.1.7.拉格朗日中值定理

设 f ( x ) 满足 { ① [ a , b ] 上连续 , ② ( a , b ) 内可导 , 则存在 ξ ∈ ( a , b ) , 使得 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) . 设f(x)满足\begin{cases}①[a,b]上连续,\\②(a,b)内可导,\end{cases}则存在\xi\in(a,b),使得f(b)-f(a)=f'(\xi)(b-a). f(x)满足{[a,b]上连续,(a,b)内可导,则存在ξ(a,b),使得f(b)f(a)=f(ξ)(ba).

  • 若 ξ ∈ ( a , b ) , 令 θ = ξ − a b − a , 则 ξ = a + θ ( b − a ) , 0 < θ < 1 , 于是 f ( b ) − f ( a ) = f ′ [ a + θ ( b − a ) ] ( b − a ) . 若\xi\in(a,b),令\theta=\frac{\xi-a}{b-a},则\xi=a+\theta(b-a),0<\theta<1,于是f(b)-f(a)=f'[a+\theta(b-a)](b-a). ξ(a,b),θ=baξa,ξ=a+θ(ba),0<θ<1,于是f(b)f(a)=f[a+θ(ba)](ba).
4.9.1.8.柯西中值定理

设 f ( x ) , g ( x ) 满足 { ① [ a , b ] 上连续 , ② ( a , b ) 内可导 , ③ g ′ ( x ) ≠ 0 , 则存在 ξ ∈ ( a , b ) , 使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) . 设f(x),g(x)满足\begin{cases}①[a,b]上连续,\\②(a,b)内可导,\\③g'(x)\ne0,\end{cases}则存在\xi\in(a,b),使得\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}. f(x),g(x)满足 [a,b]上连续,(a,b)内可导,g(x)=0,则存在ξ(a,b),使得g(b)g(a)f(b)f(a)=g(ξ)f(ξ).

4.9.1.9.泰勒公式
  1. 带拉格朗日余项的 n n n阶泰勒公式

    适用范围:适用于区间 [ a , b ] [a,b] [a,b],常在证明题中使用,如证不等式、中值等式等.

    设函数 f ( x ) f(x) f(x)在含有点 x 0 x_0 x0的区间 ( a , b ) (a,b) (a,b)内有 n + 1 n+1 n+1阶导数,则对于 x ∈ [ a , b ] x\in[a,b] x[a,b],有

    f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 , 其中 ξ 介于 x , x 0 之间 f(x)=f(x_0)+f'(x_0)(x-x_0)+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1},其中\xi介于x,x_0之间 f(x)=f(x0)+f(x0)(xx0)++n!1f(n)(x0)(xx0)n+(n+1)!f(n+1)(ξ)(xx0)n+1,其中ξ介于x,x0之间
    变体形式
    f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 + θ ( x − x 0 ) ) ( x − x 0 ) 2 , ( x ≠ x 0 ) , 0 < θ < 1 f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0+\theta(x-x_0))(x-x_0)^2,(x\ne x_0),0<\theta<1 f(x)=f(x0)+f(x0)(xx0)+2!1f′′(x0+θ(xx0))(xx0)2,(x=x0),0<θ<1

  2. 带佩亚诺余项的 n n n阶泰勒公式

    适用范围:仅适用于点 x = x 0 x=x_0 x=x0及其邻域,常用于研究点 x = x 0 x=x_0 x=x0处的某些结论,如求极限、判定无穷小的阶数、判定极值等.

    f ( x ) f(x) f(x)在点 x 0 x_0 x0 n n n阶可导,则存在 x 0 x_0 x0的一个邻域,对于该邻域中的任一点 x x x,有

    f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + o ( ( x − x 0 ) n ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+o((x-x_0)^n) f(x)=f(x0)+f(x0)(xx0)++n!1f(n)(x0)(xx0)n+o((xx0)n)

4.9.1.10.积分中值定理

设 f ( x ) 在 [ a , b ] 上连续 , 则存在 ξ ∈ ( a , b ) , 使得 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) . 设f(x)在[a,b]上连续,则存在\xi\in(a,b),使得\int_a^bf(x)\mathrm{d}x=f(\xi)(b-a). f(x)[a,b]上连续,则存在ξ(a,b),使得abf(x)dx=f(ξ)(ba).

推广 : 设 f ( x ) , g ( x ) 在 [ a , b ] 上连续 , 且 g ( x ) 在 [ a , b ] 上不变号 , 则存在 ξ ∈ ( a , b ) , 使得 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x 推广:设f(x),g(x)在[a,b]上连续,且g(x)在[a,b]上不变号,则存在\xi\in(a,b),使得\int_a^bf(x)g(x)\mathrm{d}x=f(\xi)\int_a^bg(x)\mathrm{d}x 推广:f(x),g(x)[a,b]上连续,g(x)[a,b]上不变号,则存在ξ(a,b),使得abf(x)g(x)dx=f(ξ)abg(x)dx

4.9.2.解题步骤

4.9.2.1.确定区间
4.9.2.2.确定辅助函数
  1. 简单——题设中的 f ( x ) f(x) f(x)

  2. 复杂—— ( u v ) ′ = u ′ v + u v ′ , ( u v ) ′ = u ′ v − u v ′ v 2 (uv)'=u'v+uv',{(\frac{u}{v})}'=\frac{u'v-uv'}{v^2} (uv)=uv+uv,(vu)=v2uvuv

4.9.2.3.确定使用的定理

{ 零点定理—— f ( c ) = 0 ( f ( a ) > 0 , f ( b ) < 0 ⇒ f ( c ) = 0 ) 介值定理—— f ( c ) = μ ( f ( a ) = A , f ( b ) = B , A < μ < B ⇒ f ( c ) = μ 费马定理—— f ′ ( ξ ) = 0 罗尔定理 { F ′ ( ξ ) = 0 F ( n ) ( ξ ) = 0 , n ⩾ 2 拉格朗日中值定理 { f 与 f ′ 或 f ( b ) − f ( a ) F ′ ( ξ ) > ( < ) 0 F ( n ) ( ξ ) > ( < ) 0 , n ⩾ 2 F [ f ′ ( η ) , f ′ ( τ ) ] = 0 f ′ ( x ) 单调性 泰勒公式 { f 与 f ( n ) , n ⩾ 2 F ( n ) ( ξ ) > ( < / = ) 0 , n ⩾ 2 f ′ ′ ( x ) 凹凸性 柯西中值定理 { 两个具体函数所满足的式子 一个具体函数与一个抽象函数所满足的式子 与拉格朗日中值定理综合 \begin{cases} 零点定理——f(c)=0(f(a)>0,f(b)<0\Rightarrow f(c)=0) \\介值定理——f(c)=\mu(f(a)=A,f(b)=B,A<\mu<B\Rightarrow f(c)=\mu \\费马定理——f'(\xi)=0 \\罗尔定理 \begin{cases} F'(\xi)=0 \\F^{(n)}(\xi)=0,n\geqslant2 \end{cases} \\拉格朗日中值定理 \begin{cases} f与f'或f(b)-f(a) \\F'(\xi)>(<)0 \\F^{(n)}(\xi)>(<)0,n\geqslant2 \\F[f'(\eta),f'(\tau)]=0 \\f'(x)单调性 \end{cases} \\泰勒公式 \begin{cases} f与f^{(n)},n\geqslant2 \\F^{(n)}(\xi)>(</=)0,n\geqslant2 \\f''(x)凹凸性 \end{cases} \\柯西中值定理 \begin{cases} 两个具体函数所满足的式子 \\一个具体函数与一个抽象函数所满足的式子 \\与拉格朗日中值定理综合 \end{cases} \end{cases} 零点定理——f(c)=0(f(a)>0,f(b)<0f(c)=0)介值定理——f(c)=μ(f(a)=A,f(b)=B,A<μ<Bf(c)=μ费马定理——f(ξ)=0罗尔定理{F(ξ)=0F(n)(ξ)=0,n2拉格朗日中值定理 fff(b)f(a)F(ξ)>(<)0F(n)(ξ)>(<)0,n2F[f(η),f(τ)]=0f(x)单调性泰勒公式 ff(n),n2F(n)(ξ)>(</=)0,n2f′′(x)凹凸性柯西中值定理 两个具体函数所满足的式子一个具体函数与一个抽象函数所满足的式子与拉格朗日中值定理综合

4.10.微分等式问题(方程的根、函数的零点)

  1. 罗尔原话(罗尔定理的推论):若 f ( n ) ( x ) = 0 f^{(n)}(x)=0 f(n)(x)=0至多有 k k k个根,则 f ( x ) = 0 f(x)=0 f(x)=0至多有 k + n k+n k+n个根.

  2. 实系数奇次方程 x 2 n + 1 + a 1 x 2 n + ⋯ + a 2 n x + a 2 n + 1 = 0 x^{2n+1}+a_1x^{2n}+\cdots+a_{2n}x+a_{2n+1}=0 x2n+1+a1x2n++a2nx+a2n+1=0至少有一个实根.

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值