【无人机】四轴无人机的轨迹进行可视化和动画处理(Matlab代码实现)

 📋📋📋本文目录如下:⛳️⛳️⛳️

目录

1 概述

1. 数据采集

2. 轨迹重建与分析

3. 动画制作与渲染

4. 交互式可视化

5. 优化与评估

2 运行结果

3 参考文献

4 Matlab代码实现


1 概述

随着传感器检测技术、智能控制技术和材料技术的快速发展,四轴无人机及其配套系统的发展越来越成熟。无人机遥感系统具有成本低、易维护、效率高、时效性强及对环境要求低等特点。

四轴无人机(也称为四旋翼无人机)的轨迹可视化与动画处理是一个结合了飞行控制理论、计算机图形学、以及数据分析的跨学科研究领域。这项研究旨在通过创建动态、直观的视觉展示来帮助理解、预测及优化无人机的飞行路径,对于无人机的导航、任务规划、教育培训等方面具有重要意义。以下是一些关键点和方法,可以帮助开展此类研究:

1. 数据采集

  • 传感器数据: 利用无人机上的GPS模块、IMU(惯性测量单元)、磁力计等传感器收集飞行过程中的位置、速度、方向等信息。
  • 飞行记录: 许多无人机支持“黑盒”功能,可以记录整个飞行过程的数据,包括但不限于飞行姿态、电机转速等。

2. 轨迹重建与分析

  • 数据处理: 使用如Python等编程语言及其科学计算库(如NumPy、Pandas)对采集到的数据进行预处理,剔除异常值,平滑数据等。
  • 轨迹建模: 利用计算机图形学原理,将处理后的数据转换为三维空间中的轨迹线。常用工具包括Matplotlib、Plotly、MayaVi等用于二维和三维绘图。
  • 动力学模拟: 可以采用更高级的物理引擎(如Unity 3D、Unreal Engine)或专有软件(如MATLAB/Simulink)来模拟无人机的飞行动力学,以更准确地再现飞行轨迹。

3. 动画制作与渲染

  • 动画生成: 将处理好的轨迹数据导入动画制作软件(如Blender、3ds Max)中,根据时间序列数据创建无人机的运动动画。
  • 真实感渲染: 为了增强视觉效果,可以通过调整光照、纹理、阴影等参数,使动画看起来更加逼真,同时可以加入环境因素(如风、雨)的影响模拟。

4. 交互式可视化

  • Web应用: 利用JavaScript库(如Three.js、D3.js)开发Web应用程序,让用户可以在浏览器中交互地查看无人机的飞行轨迹,调整视角、播放速度等。
  • GIS集成: 结合地理信息系统(GIS),在地图上展示无人机的实际飞行路径,叠加地形、建筑物等地理信息,提高情境感知能力。

5. 优化与评估

  • 轨迹优化: 根据可视化结果,分析无人机的飞行效率、稳定性等指标,运用算法(如遗传算法、粒子群优化)优化飞行路径。
  • 性能评估: 通过动画回放和数据分析,评估不同控制策略、路径规划算法对飞行性能的影响,不断迭代改进。

综上所述,四轴无人机轨迹的可视化和动画处理是一个综合技术栈的应用,不仅能提升无人机操作的可视化水平,还对无人机的研发、测试及应用拓展具有重要价值。

2 运行结果

 

部分代码:

function animation = drone_Animation(x,y,z,roll,pitch,yaw)
% This Animation code is for QuadCopter. Written by Jitendra Singh 

%% Define design parameters
D2R = pi/180;
R2D = 180/pi;
b   = 0.6;   % the length of total square cover by whole body of quadcopter in meter
a   = b/3;   % the legth of small square base of quadcopter(b/4)
H   = 0.06;  % hight of drone in Z direction (4cm)
H_m = H+H/2; % hight of motor in z direction (5 cm)
r_p = b/4;   % radius of propeller
%% Conversions
ro = 45*D2R;                   % angle by which rotate the base of quadcopter
Ri = [cos(ro) -sin(ro) 0;
      sin(ro) cos(ro)  0;
       0       0       1];     % rotation matrix to rotate the coordinates of base 
base_co = [-a/2  a/2 a/2 -a/2; % Coordinates of Base 
           -a/2 -a/2 a/2 a/2;
             0    0   0   0];
base = Ri*base_co;             % rotate base Coordinates by 45 degree 

to = linspace(0, 2*pi);
xp = r_p*cos(to);
yp = r_p*sin(to);
zp = zeros(1,length(to));
%% Define Figure plot
 fig1 = figure('pos', [0 50 800 600]);
 hg   = gca;
 view(68,53);
 grid on;
 axis equal;
 xlim([-1.5 1.5]); ylim([-1.5 1.5]); zlim([0 3.5]);
 title('(JITENDRA) Drone Animation')
 xlabel('X[m]');
 ylabel('Y[m]');
 zlabel('Z[m]');
 hold(gca, 'on');
 
%% Design Different parts
% design the base square
 drone(1) = patch([base(1,:)],[base(2,:)],[base(3,:)],'r');
 drone(2) = patch([base(1,:)],[base(2,:)],[base(3,:)+H],'r');
 alpha(drone(1:2),0.7);
% design 2 parpendiculer legs of quadcopter 
 [xcylinder ycylinder zcylinder] = cylinder([H/2 H/2]);
 drone(3) =  surface(b*zcylinder-b/2,ycylinder,xcylinder+H/2,'facecolor','b');
 drone(4) =  surface(ycylinder,b*zcylinder-b/2,xcylinder+H/2,'facecolor','b') ; 
 alpha(drone(3:4),0.6);
% design 4 cylindrical motors 
 drone(5) = surface(xcylinder+b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
 drone(6) = surface(xcylinder-b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
 drone(7) = surface(xcylinder,ycylinder+b/2,H_m*zcylinder+H/2,'facecolor','r');
 drone(8) = surface(xcylinder,ycylinder-b/2,H_m*zcylinder+H/2,'facecolor','r');
 alpha(drone(5:8),0.7);
% design 4 propellers
 drone(9)  = patch(xp+b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
 drone(10) = patch(xp-b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
 drone(11) = patch(xp,yp+b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
 drone(12) = patch(xp,yp-b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
 alpha(drone(9:12),0.3);

%% create a group object and parent surface
  combinedobject = hgtransform('parent',hg );
  set(drone,'parent',combinedobject)
%  drawnow
 
 for i = 1:length(x)
  
     ba = plot3(x(1:i),y(1:i),z(1:i), 'b:','LineWidth',1.5);
   
     translation = makehgtform('translate',...
                               [x(i) y(i) z(i)]);
     %set(combinedobject, 'matrix',translation);
     rotation1 = makehgtform('xrotate',(pi/180)*(roll(i)));
     rotation2 = makehgtform('yrotate',(pi/180)*(pitch(i)));
     rotation3 = makehgtform('zrotate',yaw(i));
     %scaling = makehgtform('scale',1-i/20);
     set(combinedobject,'matrix',...
          translation*rotation3*rotation2*rotation1);
      
      %movieVector(i) =  getframe(fig1);
        %delete(b);
     drawnow
   % pause(0.2);
 end

 

function animation = drone_Animation(x,y,z,roll,pitch,yaw)
% This Animation code is for QuadCopter. Written by Jitendra Singh 

%% Define design parameters
D2R = pi/180;
R2D = 180/pi;
b   = 0.6;   % the length of total square cover by whole body of quadcopter in meter
a   = b/3;   % the legth of small square base of quadcopter(b/4)
H   = 0.06;  % hight of drone in Z direction (4cm)
H_m = H+H/2; % hight of motor in z direction (5 cm)
r_p = b/4;   % radius of propeller
%% Conversions
ro = 45*D2R;                   % angle by which rotate the base of quadcopter
Ri = [cos(ro) -sin(ro) 0;
      sin(ro) cos(ro)  0;
       0       0       1];     % rotation matrix to rotate the coordinates of base 
base_co = [-a/2  a/2 a/2 -a/2; % Coordinates of Base 
           -a/2 -a/2 a/2 a/2;
             0    0   0   0];
base = Ri*base_co;             % rotate base Coordinates by 45 degree 

to = linspace(0, 2*pi);
xp = r_p*cos(to);
yp = r_p*sin(to);
zp = zeros(1,length(to));
%% Define Figure plot
 fig1 = figure('pos', [0 50 800 600]);
 hg   = gca;
 view(68,53);
 grid on;
 axis equal;
 xlim([-1.5 1.5]); ylim([-1.5 1.5]); zlim([0 3.5]);
 title('(JITENDRA) Drone Animation')
 xlabel('X[m]');
 ylabel('Y[m]');
 zlabel('Z[m]');
 hold(gca, 'on');
 
%% Design Different parts
% design the base square
 drone(1) = patch([base(1,:)],[base(2,:)],[base(3,:)],'r');
 drone(2) = patch([base(1,:)],[base(2,:)],[base(3,:)+H],'r');
 alpha(drone(1:2),0.7);
% design 2 parpendiculer legs of quadcopter 
 [xcylinder ycylinder zcylinder] = cylinder([H/2 H/2]);
 drone(3) =  surface(b*zcylinder-b/2,ycylinder,xcylinder+H/2,'facecolor','b');
 drone(4) =  surface(ycylinder,b*zcylinder-b/2,xcylinder+H/2,'facecolor','b') ; 
 alpha(drone(3:4),0.6);
% design 4 cylindrical motors 
 drone(5) = surface(xcylinder+b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
 drone(6) = surface(xcylinder-b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
 drone(7) = surface(xcylinder,ycylinder+b/2,H_m*zcylinder+H/2,'facecolor','r');
 drone(8) = surface(xcylinder,ycylinder-b/2,H_m*zcylinder+H/2,'facecolor','r');
 alpha(drone(5:8),0.7);
% design 4 propellers
 drone(9)  = patch(xp+b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
 drone(10) = patch(xp-b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
 drone(11) = patch(xp,yp+b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
 drone(12) = patch(xp,yp-b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
 alpha(drone(9:12),0.3);

%% create a group object and parent surface
  combinedobject = hgtransform('parent',hg );
  set(drone,'parent',combinedobject)
%  drawnow
 
 for i = 1:length(x)
  
     ba = plot3(x(1:i),y(1:i),z(1:i), 'b:','LineWidth',1.5);
   
     translation = makehgtform('translate',...
                               [x(i) y(i) z(i)]);
     %set(combinedobject, 'matrix',translation);
     rotation1 = makehgtform('xrotate',(pi/180)*(roll(i)));
     rotation2 = makehgtform('yrotate',(pi/180)*(pitch(i)));
     rotation3 = makehgtform('zrotate',yaw(i));
     %scaling = makehgtform('scale',1-i/20);
     set(combinedobject,'matrix',...
          translation*rotation3*rotation2*rotation1);
      
      %movieVector(i) =  getframe(fig1);
        %delete(b);
     drawnow
   % pause(0.2);
 end

3 参考文献

部分理论引用网络文献,如有侵权请联系删除。

[1]李想,李阳.四轴无人机在林业管理中的应用[J].广西林业科学,2020,49(02):296-299.DOI:10.19692/j.cnki.gfs.2020.02.028.

4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值