Dobot magician机械臂抓取实战---手眼标定(4)

        在前面,我们最后推导出来了这个求内参式子\begin{bmatrix} V_{12}^{T}\\ (V_{11}-V_{22})^{T} \end{bmatrix}b = 0,它实际上是没有物理意义的,那么我们就可以在图像成像的时候可以找到一个有物理意义的东西——重投影误差。找到重投影误差之后,我们就可以使用光束法平差来计算内参。

五、最小重投影误差

X已知,观测点x(u,v)也是已知的,然后通过X和观测点x之间的单应变换我们可以找出K[R,T]的估计量。

x^{'}= u-u_{0}=-f_{u}\frac{r_{11}(X-X_{c}+r_{12}(Y-Y_{c})+r_{13}(Z-Z_{c})}{r_{31}(X-X_{c}+r_{32}(Y-Y_{c})+r_{33}(Z-Z_{c})}

y^{'}= v-v_{0}=-f_{u}\frac{r_{21}(X-X_{c}+r_{22}(Y-Y_{c})+r_{23}(Z-Z_{c})}{r_{31}(X-X_{c}+r_{32}(Y-Y_{c})+r_{33}(Z-Z_{c})}

将X带入上面的方程中,可以求出在k[RT]参数下,在图像上的计算点X1。然后在计算点和观测点之间有一个误差,叫做重投影误差,即|X - X1|。

在图像上,重投影误差的平方最小(\left \| X-X^{1} \right \|^{2}),求出来的K[RT]是最理想化的。

六、光束法平差

内外参数的估计量K[RT],我们可以使用非线性标定的方法求解

 红点是计算点,黑点是观测点。

P = _{}min_{P}\sum_{i}^{} d\left ( X_{i} ,PX_{i1}\right )^{2}

\begin{bmatrix} u_{i}\\ v_{i} \\ 1 \end{bmatrix} =\lambda \begin{bmatrix} m_{00} &m_{01} &m_{02} &m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13}\\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix}\begin{bmatrix} X_{i}\\ Y_{i}\\ Z_{i}\\1\\ \end{bmatrix}

\hat{u}_{i} = \frac{m_{00}X_{i}+m_{01}Y_{i}+m_{02}Z_{i}+m_{03}}{m_{20}X_{i}+m_{21}Y_{i}+m_{22}Z_{i}+m_{23}}

\hat{v}_{i} = \frac{m_{10}X_{i}+m_{11}Y_{i}+m_{12}Z_{i}+m_{13}}{m_{20}X_{i}+m_{21}Y_{i}+m_{22}Z_{i}+m_{23}}

\sum_{i}^{} d\left ( X_{i} ,X_{i1}\right ) = \sum_{i}^{}\left | u_{i}- \frac{m_{00}X_{i}+m_{01}Y_{i}+m_{02}Z_{i}+m_{03}}{m_{20}X_{i}+m_{21}Y_{i}+m_{22}Z_{i}+m_{23}}\right |^{2}+\left | v_{i}- \frac{m_{10}X_{i}+m_{11}Y_{i}+m_{12}Z_{i}+m_{13}}{m_{20}X_{i}+m_{21}Y_{i}+m_{22}Z_{i}+m_{23}} \right |^{2} = \sum_{n}^{i=1}\sum_{m}^{j=1}\left \| m_{ij}-K(R_{i}M_{j}+t) \right \|\frac{2}{}

上述过程叫光束法平差。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
dobot机械抓取主要是通过改变机械的base坐标系(tool坐标系)来实现的。视觉机械可以安装摄像头来实现视觉识别,摄像头可以安装在机械上或周围环境上。为了确定摄像头和机械的位置坐标关系,需要进行手眼标定,并得到机械坐标系和摄像头坐标系之间的转换矩阵。 dobot机械抓取过程中,还涉及相机坐标系和图像坐标系之间的转换。图像坐标系的坐标原点是相机光轴与成像平面的交点,而相机坐标系和图像坐标系之间的转换可以使用转换矩阵实现。 相机的成像原理是通过光学系统将光线聚焦在感光元件上,感光元件将光线转换为电信号,然后进行图像处理和存储。这个过程通过摄像头来实现,可以获取到图像信息,从而进行抓取操作。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Dobot magician机械抓取实战---前言](https://blog.csdn.net/weixin_64037619/article/details/130691848)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Dobot magician机械抓取实战---手眼标定(1)](https://blog.csdn.net/weixin_64037619/article/details/131161932)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

没入&浅出

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值