基于CNN-GRU的风电功率预测研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、CNN-GRU模型概述

1. CNN部分

2. GRU部分

三、研究内容与方法

1. 数据收集与预处理

2. 特征提取与选择

3. 模型构建与训练

4. 模型评估与优化

四、研究成果与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CNN-GRU的风电功率预测研究是近年来在深度学习领域的一个热点方向。这种预测方法结合了卷积神经网络(CNN)和门控循环单元(GRU)的优势,旨在提高风电功率预测的精度和稳定性。以下是对该研究的详细分析:

一、研究背景与意义

风电作为可再生能源的重要组成部分,其开发和利用对于缓解能源危机、减少环境污染具有重要意义。然而,风电具有随机性、间歇性和波动性等特点,给风电功率的准确预测带来了巨大挑战。因此,研究高精度的风电功率预测方法,对于提高风电并网效率、优化电网调度、减少弃风现象具有重要意义。

二、CNN-GRU模型概述

CNN-GRU模型是一种结合了CNN和GRU的深度学习模型,用于时间序列预测。该模型通过CNN提取输入数据的空间特征,然后通过GRU捕捉时间序列中的长期依赖关系,从而实现对风电功率的准确预测。

1. CNN部分

CNN主要用于处理具有空间结构的数据,如图像。在风电功率预测中,CNN可以提取风速、风向、温度等气象数据的空间特征,这些特征对于预测风电功率至关重要。CNN通过卷积层、池化层等结构,对输入数据进行特征提取和降维处理,生成更具代表性的特征图。

2. GRU部分

GRU是一种改进的循环神经网络(RNN),它克服了传统RNN在处理长序列时容易出现的梯度消失或梯度爆炸问题。GRU通过引入更新门和重置门等机制,实现了对时间序列数据的长期依赖关系的有效捕捉。在风电功率预测中,GRU能够利用历史风电功率数据和气象数据,预测未来一段时间内的风电功率。

三、研究内容与方法

基于CNN-GRU的风电功率预测研究通常包括以下几个步骤:

1. 数据收集与预处理

收集与风电场发电功率相关的数据,包括风速、风向、温度、湿度等气象数据以及风电场的历史功率数据。对数据进行预处理,包括数据清洗、缺失值处理、异常值处理等,确保数据的质量和完整性。

2. 特征提取与选择

利用CNN对预处理后的数据进行特征提取,生成特征图。根据特征图的重要性和相关性,选择对风电功率预测有重要影响的特征。

3. 模型构建与训练

构建CNN-GRU模型,将提取的特征图输入到GRU中进行时间序列预测。使用训练集对模型进行训练,通过反向传播算法更新网络参数,使模型具备较高的预测精度。

4. 模型评估与优化

使用测试集对训练好的模型进行评估,计算预测误差,评估模型的预测性能。根据评估结果对模型进行优化调整,提高模型的预测精度和稳定性。

四、研究成果与展望

基于CNN-GRU的风电功率预测方法已经取得了显著的研究成果。该方法不仅提高了风电功率预测的精度和稳定性,还为风电并网调度和电网优化提供了有力支持。未来,随着深度学习技术的不断发展和完善,基于CNN-GRU的风电功率预测方法有望在更多领域得到应用和推广。

同时,未来的研究还可以进一步探索以下方向:

  • 提高模型的鲁棒性和泛化能力,使其能够适应不同风电场和气象条件下的预测任务;
  • 结合其他先进算法和技术,如注意力机制、迁移学习等,进一步提升模型的预测性能;
  • 拓展模型的应用范围,如电力负荷预测、光伏发电预测等。

📚2 运行结果

部分代码:

%  训练
tic
net = trainNetwork(trainD,targetD',lgraph0,options0);
toc
%analyzeNetwork(net);% 查看网络结构
%  预测
t_sim1 = predict(net, trainD); 
t_sim2 = predict(net, testD); 

%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_train1 = T_train;
T_test2 = T_test;

%  数据格式转换
T_sim1 = double(T_sim1);% cell2mat将cell元胞数组转换为普通数组
T_sim2 = double(T_sim2);

CNNGRU_TSIM1 = T_sim1';
CNNGRU_TSIM2 = T_sim2';
save CNNGRU CNNGRU_TSIM1 CNNGRU_TSIM2

% 指标计算
disp('…………训练集误差指标…………')
[mae1,rmse1,mape1,error1]=calc_error(T_train1,T_sim1');
fprintf('\n')

figure('Position',[200,300,600,200])
plot(T_train1);
hold on
plot(T_sim1')
legend('真实值','预测值')
title('CNN-GRU训练集预测效果对比')
xlabel('样本点')
ylabel('发电功率')

disp('…………测试集误差指标…………')
[mae2,rmse2,mape2,error2]=calc_error(T_test2,T_sim2');
fprintf('\n')


figure('Position',[200,300,600,200])
plot(T_test2);
hold on
plot(T_sim2')
legend('真实值','预测值')
title('CNN-GRU预测集预测效果对比')
xlabel('样本点')
ylabel('发电功率')

figure('Position',[200,300,600,200])
plot(T_sim2'-T_test2)
title('CNN-GRU误差曲线图')
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]吴晓刚,阎洁,葛畅,等.基于改进GRU-CNN的风光水一体化超短期功率预测方法[J].中国电力, 2023, 56(9):178-186.

[2]贾睿,杨国华,郑豪丰,等.基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J].中国电力, 2022, 55(5):47-56.DOI:10.11930/j.issn.1004-9649.202104023.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 11
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很抱歉,我不会编写 Matlab 代码,但是我可以提供一些关于麻雀算法优化的思路和参考资料。 麻雀算法是一种基于麻雀群体行为模拟的智能优化算法,适用于求解复杂的优化问题。在卷积神经网络-门控循环单元(CNN-GRU)回归预测中,可以将麻雀算法应用于优化网络的权重和偏置,从而提高网络的预测精度。 以下是使用麻雀算法优化卷积神经网络的一些步骤和注意事项: 1. 设计适应度函数:在优化过程中,需要根据网络的预测结果和实际值之间的误差来评估每组权重和偏置的优劣。可以选择平方误差或者交叉熵等作为适应度函数。 2. 初始化麻雀种群:根据网络的结构和参数数量,初始化一定数量的麻雀种群,每只麻雀代表一组权重和偏置。 3. 麻雀的行为模拟:根据麻雀的生存需求和群体行为规律,模拟麻雀在搜索空间中的移动和交互行为。可以选择随机飞行、社会学习、探索和利用等策略。 4. 适应度函数的计算:对每只麻雀的权重和偏置进行前向传播,计算出预测结果和实际值之间的误差,作为适应度函数的值。 5. 麻雀种群的更新:根据适应度函数的值,选择优秀的麻雀进行繁殖和更新,同时保留一部分较差的麻雀,以保持种群的多样性和探索能力。 6. 终止条件的判断:可以设置一定的迭代次数或者适应度函数的收敛阈值,当达到终止条件时,停止搜索并输出最优解。 参考资料: 1. Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010), 65-74. 2. Liang, J. J., Qin, A. K., & Suganthan, P. N. (2013). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 17(3), 365-377. 3. Zhang, Y. N., & Huang, D. S. (2015). A novel cuckoo search algorithm for global optimization. Journal of Computational and Theoretical Nanoscience, 12(9), 3259-3267. 4. Liu, Y., & Lampinen, J. (2002). A fuzzy adaptive particle swarm optimization algorithm. Proceedings of the IEEE Congress on Evolutionary Computation, 1, 1046-1051.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值